Lin Xu , Jin Zou , Si-qi Zeng , Jun-wei Liu , Ke-ming Liu , Qiang Hu , Guo-jie Huang
{"title":"Corrosion resistance of Cu-Fe deformation processed in situ alloy in chloride ion environment","authors":"Lin Xu , Jin Zou , Si-qi Zeng , Jun-wei Liu , Ke-ming Liu , Qiang Hu , Guo-jie Huang","doi":"10.1016/j.elecom.2024.107734","DOIUrl":null,"url":null,"abstract":"<div><p>To assess the corrosion resistance of Cu-Fe deformation in situ alloys in a chloride ion environment, Cu-Fe alloys with varying Fe contents (5 wt%, 10 wt%, and 14 wt%) were prepared using vacuum induction melting, and the impact of Fe content on the corrosion resistance was examined. The corrosion morphology and corrosion products were analyzed, and the corrosion rate, corrosion period, dynamic potential polarization curves, electrochemical parameters, and electrochemical impedance spectra with different Fe contents were determined. However, the corrosion resistance of Cu-Fe alloys initially increased with an increase in Fe content before decreasing, with Cu-10 wt% Fe alloys (95% reduction rate) exhibiting the best corrosion resistance. As the Fe content increased, the amount of primary Fe phase gradually increased and became more densely distributed. This led to an increase in the dense oxide film on the surface, thereby enhancing the corrosion resistance of the material. Moreover, with a further increase in Fe, the primary Fe phase exhibited coarsening and non-uniform distribution. This resulted in the oxide film becoming looser, leading to a decreased corrosion resistance of the alloy.</p></div>","PeriodicalId":304,"journal":{"name":"Electrochemistry Communications","volume":"163 ","pages":"Article 107734"},"PeriodicalIF":4.7000,"publicationDate":"2024-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1388248124000778/pdfft?md5=eef424a38509f12598b7b69a06486d9d&pid=1-s2.0-S1388248124000778-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electrochemistry Communications","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1388248124000778","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 0
Abstract
To assess the corrosion resistance of Cu-Fe deformation in situ alloys in a chloride ion environment, Cu-Fe alloys with varying Fe contents (5 wt%, 10 wt%, and 14 wt%) were prepared using vacuum induction melting, and the impact of Fe content on the corrosion resistance was examined. The corrosion morphology and corrosion products were analyzed, and the corrosion rate, corrosion period, dynamic potential polarization curves, electrochemical parameters, and electrochemical impedance spectra with different Fe contents were determined. However, the corrosion resistance of Cu-Fe alloys initially increased with an increase in Fe content before decreasing, with Cu-10 wt% Fe alloys (95% reduction rate) exhibiting the best corrosion resistance. As the Fe content increased, the amount of primary Fe phase gradually increased and became more densely distributed. This led to an increase in the dense oxide film on the surface, thereby enhancing the corrosion resistance of the material. Moreover, with a further increase in Fe, the primary Fe phase exhibited coarsening and non-uniform distribution. This resulted in the oxide film becoming looser, leading to a decreased corrosion resistance of the alloy.
期刊介绍:
Electrochemistry Communications is an open access journal providing fast dissemination of short communications, full communications and mini reviews covering the whole field of electrochemistry which merit urgent publication. Short communications are limited to a maximum of 20,000 characters (including spaces) while full communications and mini reviews are limited to 25,000 characters (including spaces). Supplementary information is permitted for full communications and mini reviews but not for short communications. We aim to be the fastest journal in electrochemistry for these types of papers.