Eduardo Orozco , Paulo C. Cárdenas , Jesús A. López , Cinthia K. Rodriguez
{"title":"Low-cost desktop learning factory to support the teaching of artificial intelligence","authors":"Eduardo Orozco , Paulo C. Cárdenas , Jesús A. López , Cinthia K. Rodriguez","doi":"10.1016/j.ohx.2024.e00528","DOIUrl":null,"url":null,"abstract":"<div><p>The following document details low-cost hardware and open-source available software tools that can be combined to support active teaching methodologies like Problem-Based Learning (PBL) and incorporate work-oriented technological skills in students. This proposal presents a prototype of Open Educational Resources (OER) that integrates software and hardware tools for the specific purpose of facilitating instruction in Artificial Intelligence. The hardware consists of affordable electronic devices, including an Arduino board, servo motors, sensors, a relay and a motor, all integrated into a scaled conveyor belt. On the other hand, open software was used to implement an image classification program with different features (shape, color, size, among others). The exact construction steps, circuits, and code are presented in detail and should encourage other scientists to replicate the experimental setup, especially if they are looking for experimental teaching of artificial intelligence, since the system allows object classification using the machine learning paradigm to facilitate the teaching of artificial intelligence concepts with computer vision concepts.</p></div>","PeriodicalId":37503,"journal":{"name":"HardwareX","volume":"18 ","pages":"Article e00528"},"PeriodicalIF":2.0000,"publicationDate":"2024-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2468067224000221/pdfft?md5=cf72d8e603173aa07407ee10178b240c&pid=1-s2.0-S2468067224000221-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"HardwareX","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2468067224000221","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
The following document details low-cost hardware and open-source available software tools that can be combined to support active teaching methodologies like Problem-Based Learning (PBL) and incorporate work-oriented technological skills in students. This proposal presents a prototype of Open Educational Resources (OER) that integrates software and hardware tools for the specific purpose of facilitating instruction in Artificial Intelligence. The hardware consists of affordable electronic devices, including an Arduino board, servo motors, sensors, a relay and a motor, all integrated into a scaled conveyor belt. On the other hand, open software was used to implement an image classification program with different features (shape, color, size, among others). The exact construction steps, circuits, and code are presented in detail and should encourage other scientists to replicate the experimental setup, especially if they are looking for experimental teaching of artificial intelligence, since the system allows object classification using the machine learning paradigm to facilitate the teaching of artificial intelligence concepts with computer vision concepts.
HardwareXEngineering-Industrial and Manufacturing Engineering
CiteScore
4.10
自引率
18.20%
发文量
124
审稿时长
24 weeks
期刊介绍:
HardwareX is an open access journal established to promote free and open source designing, building and customizing of scientific infrastructure (hardware). HardwareX aims to recognize researchers for the time and effort in developing scientific infrastructure while providing end-users with sufficient information to replicate and validate the advances presented. HardwareX is open to input from all scientific, technological and medical disciplines. Scientific infrastructure will be interpreted in the broadest sense. Including hardware modifications to existing infrastructure, sensors and tools that perform measurements and other functions outside of the traditional lab setting (such as wearables, air/water quality sensors, and low cost alternatives to existing tools), and the creation of wholly new tools for either standard or novel laboratory tasks. Authors are encouraged to submit hardware developments that address all aspects of science, not only the final measurement, for example, enhancements in sample preparation and handling, user safety, and quality control. The use of distributed digital manufacturing strategies (e.g. 3-D printing) is encouraged. All designs must be submitted under an open hardware license.