Biobased short chain fatty acid production - Exploring microbial community dynamics and metabolic networks through kinetic and microbial modeling approaches
IF 12.1 1区 工程技术Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Merve Atasoy , William T. Scott Jr , Alberte Regueira , Miguel Mauricio-Iglesias , Peter J. Schaap , Hauke Smidt
{"title":"Biobased short chain fatty acid production - Exploring microbial community dynamics and metabolic networks through kinetic and microbial modeling approaches","authors":"Merve Atasoy , William T. Scott Jr , Alberte Regueira , Miguel Mauricio-Iglesias , Peter J. Schaap , Hauke Smidt","doi":"10.1016/j.biotechadv.2024.108363","DOIUrl":null,"url":null,"abstract":"<div><p>In recent years, there has been growing interest in harnessing anaerobic digestion technology for resource recovery from waste streams. This approach has evolved beyond its traditional role in energy generation to encompass the production of valuable carboxylic acids, especially volatile fatty acids (VFAs) like acetic acid, propionic acid, and butyric acid. VFAs hold great potential for various industries and biobased applications due to their versatile properties. Despite increasing global demand, over 90% of VFAs are currently produced synthetically from petrochemicals. Realizing the potential of large-scale biobased VFA production from waste streams offers significant eco-friendly opportunities but comes with several key challenges. These include low VFA production yields, unstable acid compositions, complex and expensive purification methods, and post-processing needs. Among these, production yield and acid composition stand out as the most critical obstacles impacting economic viability and competitiveness. This paper seeks to offer a comprehensive view of combining complementary modeling approaches, including kinetic and microbial modeling, to understand the workings of microbial communities and metabolic pathways in VFA production, enhance production efficiency, and regulate acid profiles through the integration of omics and bioreactor data.</p></div>","PeriodicalId":8946,"journal":{"name":"Biotechnology advances","volume":"73 ","pages":"Article 108363"},"PeriodicalIF":12.1000,"publicationDate":"2024-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0734975024000570/pdfft?md5=b7c49163add23c9b32403063b5dfbbcc&pid=1-s2.0-S0734975024000570-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biotechnology advances","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0734975024000570","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
In recent years, there has been growing interest in harnessing anaerobic digestion technology for resource recovery from waste streams. This approach has evolved beyond its traditional role in energy generation to encompass the production of valuable carboxylic acids, especially volatile fatty acids (VFAs) like acetic acid, propionic acid, and butyric acid. VFAs hold great potential for various industries and biobased applications due to their versatile properties. Despite increasing global demand, over 90% of VFAs are currently produced synthetically from petrochemicals. Realizing the potential of large-scale biobased VFA production from waste streams offers significant eco-friendly opportunities but comes with several key challenges. These include low VFA production yields, unstable acid compositions, complex and expensive purification methods, and post-processing needs. Among these, production yield and acid composition stand out as the most critical obstacles impacting economic viability and competitiveness. This paper seeks to offer a comprehensive view of combining complementary modeling approaches, including kinetic and microbial modeling, to understand the workings of microbial communities and metabolic pathways in VFA production, enhance production efficiency, and regulate acid profiles through the integration of omics and bioreactor data.
期刊介绍:
Biotechnology Advances is a comprehensive review journal that covers all aspects of the multidisciplinary field of biotechnology. The journal focuses on biotechnology principles and their applications in various industries, agriculture, medicine, environmental concerns, and regulatory issues. It publishes authoritative articles that highlight current developments and future trends in the field of biotechnology. The journal invites submissions of manuscripts that are relevant and appropriate. It targets a wide audience, including scientists, engineers, students, instructors, researchers, practitioners, managers, governments, and other stakeholders in the field. Additionally, special issues are published based on selected presentations from recent relevant conferences in collaboration with the organizations hosting those conferences.