{"title":"Targeted genome-modification tools and their advanced applications in crop breeding","authors":"Boshu Li, Chao Sun, Jiayang Li, Caixia Gao","doi":"10.1038/s41576-024-00720-2","DOIUrl":null,"url":null,"abstract":"Crop improvement by genome editing involves the targeted alteration of genes to improve plant traits, such as stress tolerance, disease resistance or nutritional content. Techniques for the targeted modification of genomes have evolved from generating random mutations to precise base substitutions, followed by insertions, substitutions and deletions of small DNA fragments, and are finally starting to achieve precision manipulation of large DNA segments. Recent developments in base editing, prime editing and other CRISPR-associated systems have laid a solid technological foundation to enable plant basic research and precise molecular breeding. In this Review, we systematically outline the technological principles underlying precise and targeted genome-modification methods. We also review methods for the delivery of genome-editing reagents in plants and outline emerging crop-breeding strategies based on targeted genome modification. Finally, we consider potential future developments in precise genome-editing technologies, delivery methods and crop-breeding approaches, as well as regulatory policies for genome-editing products. Targeted genome modification using CRISPR–Cas genome editing, base editing or prime editing is driving base research in plants and precise molecular breeding. The authors review the technological principles underlying these methods, approaches for their delivery in plants, and emerging crop-breeding strategies based on targeted genome modification.","PeriodicalId":19067,"journal":{"name":"Nature Reviews Genetics","volume":"25 9","pages":"603-622"},"PeriodicalIF":39.1000,"publicationDate":"2024-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Reviews Genetics","FirstCategoryId":"99","ListUrlMain":"https://www.nature.com/articles/s41576-024-00720-2","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0
Abstract
Crop improvement by genome editing involves the targeted alteration of genes to improve plant traits, such as stress tolerance, disease resistance or nutritional content. Techniques for the targeted modification of genomes have evolved from generating random mutations to precise base substitutions, followed by insertions, substitutions and deletions of small DNA fragments, and are finally starting to achieve precision manipulation of large DNA segments. Recent developments in base editing, prime editing and other CRISPR-associated systems have laid a solid technological foundation to enable plant basic research and precise molecular breeding. In this Review, we systematically outline the technological principles underlying precise and targeted genome-modification methods. We also review methods for the delivery of genome-editing reagents in plants and outline emerging crop-breeding strategies based on targeted genome modification. Finally, we consider potential future developments in precise genome-editing technologies, delivery methods and crop-breeding approaches, as well as regulatory policies for genome-editing products. Targeted genome modification using CRISPR–Cas genome editing, base editing or prime editing is driving base research in plants and precise molecular breeding. The authors review the technological principles underlying these methods, approaches for their delivery in plants, and emerging crop-breeding strategies based on targeted genome modification.
通过基因组编辑改良作物涉及有针对性地改变基因,以改善植物的性状,如抗逆性、抗病性或营养成分。对基因组进行定向改造的技术已经从产生随机突变发展到精确的碱基置换,再到小 DNA 片段的插入、置换和删除,最后开始实现对大 DNA 片段的精确操作。碱基编辑、质粒编辑和其他 CRISPR 相关系统的最新发展为植物基础研究和精确分子育种奠定了坚实的技术基础。在本综述中,我们系统地概述了精确和靶向基因组修饰方法的技术原理。我们还回顾了在植物中传递基因组编辑试剂的方法,并概述了基于靶向基因组修饰的新兴作物育种策略。最后,我们考虑了精确基因组编辑技术、传递方法和作物育种方法的未来发展潜力,以及基因组编辑产品的监管政策。
期刊介绍:
At Nature Reviews Genetics, our goal is to be the leading source of reviews and commentaries for the scientific communities we serve. We are dedicated to publishing authoritative articles that are easily accessible to our readers. We believe in enhancing our articles with clear and understandable figures, tables, and other display items. Our aim is to provide an unparalleled service to authors, referees, and readers, and we are committed to maximizing the usefulness and impact of each article we publish.
Within our journal, we publish a range of content including Research Highlights, Comments, Reviews, and Perspectives that are relevant to geneticists and genomicists. With our broad scope, we ensure that the articles we publish reach the widest possible audience.
As part of the Nature Reviews portfolio of journals, we strive to uphold the high standards and reputation associated with this esteemed collection of publications.