The effect of topological design on the degradation behavior of additively manufactured porous zinc alloy

IF 6.6 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Yixuan Shi, Wei Xu, Haodong Che, Shangyan Zhao, Weiwei Chang, Xuan Li, Yuchen Lu, Chenran Xue, Dawei Zhang, Lu-Ning Wang, Yageng Li
{"title":"The effect of topological design on the degradation behavior of additively manufactured porous zinc alloy","authors":"Yixuan Shi, Wei Xu, Haodong Che, Shangyan Zhao, Weiwei Chang, Xuan Li, Yuchen Lu, Chenran Xue, Dawei Zhang, Lu-Ning Wang, Yageng Li","doi":"10.1038/s41529-024-00451-z","DOIUrl":null,"url":null,"abstract":"The advent of additively manufactured biodegradable porous metals presents a transformative opportunity to meet the criteria of ideal bone substitutes. Precisely tailoring their degradation behavior constitutes a pivotal aspect of this endeavor. In this study, we investigated the effects of topological designs on the degradation profile of laser powder bed fusion (LPBF) Zn scaffolds under dynamic in vitro immersion tests. Specifically, four types of Zn-0.4Mn-0.2Mg scaffolds (beam-based: diamond, face center cubic; surface-based: gyroid, schwarz-P) were designed and fabricated. The degradation mechanism of the scaffolds was comprehensively evaluated using both experimental and simulation methods. The results illuminate the profound impact of structural design on the degradation properties of the Zn alloy scaffolds. The beam-based diamond and face center cubic scaffolds exhibited a degradation rate of 0.08–0.12 mm per year with a relatively uniform degradation mode under dynamic immersion. On the contrary, the surface-based gyroid and Schwarz-P scaffolds demonstrated a notably reduced degradation rate due to lower permeability. This restricted the diffusion of medium ions within the pores, culminating in the accumulation of degradation products and more severe localized degradation. This study underscores the potential of topological design as a compelling strategy for tailoring the degradation profile of additively manufactured biodegradable scaffolds, thereby advancing their suitability as bone substitutes.","PeriodicalId":19270,"journal":{"name":"npj Materials Degradation","volume":" ","pages":"1-12"},"PeriodicalIF":6.6000,"publicationDate":"2024-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41529-024-00451-z.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Materials Degradation","FirstCategoryId":"88","ListUrlMain":"https://www.nature.com/articles/s41529-024-00451-z","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The advent of additively manufactured biodegradable porous metals presents a transformative opportunity to meet the criteria of ideal bone substitutes. Precisely tailoring their degradation behavior constitutes a pivotal aspect of this endeavor. In this study, we investigated the effects of topological designs on the degradation profile of laser powder bed fusion (LPBF) Zn scaffolds under dynamic in vitro immersion tests. Specifically, four types of Zn-0.4Mn-0.2Mg scaffolds (beam-based: diamond, face center cubic; surface-based: gyroid, schwarz-P) were designed and fabricated. The degradation mechanism of the scaffolds was comprehensively evaluated using both experimental and simulation methods. The results illuminate the profound impact of structural design on the degradation properties of the Zn alloy scaffolds. The beam-based diamond and face center cubic scaffolds exhibited a degradation rate of 0.08–0.12 mm per year with a relatively uniform degradation mode under dynamic immersion. On the contrary, the surface-based gyroid and Schwarz-P scaffolds demonstrated a notably reduced degradation rate due to lower permeability. This restricted the diffusion of medium ions within the pores, culminating in the accumulation of degradation products and more severe localized degradation. This study underscores the potential of topological design as a compelling strategy for tailoring the degradation profile of additively manufactured biodegradable scaffolds, thereby advancing their suitability as bone substitutes.

Abstract Image

拓扑设计对添加剂制造的多孔锌合金降解行为的影响
添加剂制造的可生物降解多孔金属的出现,为满足理想骨替代品的标准提供了一个变革性的机会。精确定制其降解行为是这一努力的关键环节。在本研究中,我们研究了拓扑设计对激光粉末床融合(LPBF)锌支架在动态体外浸泡试验下降解曲线的影响。具体而言,我们设计并制造了四种类型的 Zn-0.4Mn-0.2Mg 支架(束基:菱形、面心立方;面基:陀螺形、施瓦茨-P)。利用实验和模拟方法全面评估了支架的降解机制。结果表明,结构设计对锌合金支架的降解性能有着深远的影响。在动态浸泡条件下,梁基菱形和面心立方支架的降解速率为每年 0.08-0.12 毫米,降解模式相对均匀。相反,基于表面的陀螺和 Schwarz-P 支架由于渗透性较低,降解率明显降低。这限制了孔内介质离子的扩散,最终导致降解产物的积累和更严重的局部降解。这项研究强调了拓扑设计作为一种令人信服的策略的潜力,可用于定制加成制造的生物可降解支架的降解曲线,从而提高其作为骨替代品的适用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
npj Materials Degradation
npj Materials Degradation MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
7.80
自引率
7.80%
发文量
86
审稿时长
6 weeks
期刊介绍: npj Materials Degradation considers basic and applied research that explores all aspects of the degradation of metallic and non-metallic materials. The journal broadly defines ‘materials degradation’ as a reduction in the ability of a material to perform its task in-service as a result of environmental exposure. The journal covers a broad range of topics including but not limited to: -Degradation of metals, glasses, minerals, polymers, ceramics, cements and composites in natural and engineered environments, as a result of various stimuli -Computational and experimental studies of degradation mechanisms and kinetics -Characterization of degradation by traditional and emerging techniques -New approaches and technologies for enhancing resistance to degradation -Inspection and monitoring techniques for materials in-service, such as sensing technologies
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信