Ubiquitous UWB Ranging Error Mitigation With Application to Infrastructure-Free Cooperative Positioning

Maija Mäkelä;Martta-Kaisa Olkkonen;Martti Kirkko-Jaakkola;Toni Hammarberg;Tuomo Malkamäki;Jesperi Rantanen;Sanna Kaasalainen
{"title":"Ubiquitous UWB Ranging Error Mitigation With Application to Infrastructure-Free Cooperative Positioning","authors":"Maija Mäkelä;Martta-Kaisa Olkkonen;Martti Kirkko-Jaakkola;Toni Hammarberg;Tuomo Malkamäki;Jesperi Rantanen;Sanna Kaasalainen","doi":"10.1109/JISPIN.2024.3384909","DOIUrl":null,"url":null,"abstract":"Ultra wideband (UWB) signals are a promising choice for indoor positioning applications, since they are able to penetrate walls to a certain extent. Nevertheless, signal reflections and non-line-of-sight propagation cause bias in the measured range. This ranging error can be corrected with machine learning (ML) methods, such as convolutional neural networks (CNNs). However, these ML models often generalize poorly between different environments. In this work we present an instance-based transfer learning (TL) approach, that enables generalizing a CNN-based ranging error mitigation approach to a new situation with only a few unlabeled training samples. The performance of the UWB error correction approach is demonstrated in a real-life infrastructure-free cooperative positioning setting.","PeriodicalId":100621,"journal":{"name":"IEEE Journal of Indoor and Seamless Positioning and Navigation","volume":"2 ","pages":"143-150"},"PeriodicalIF":0.0000,"publicationDate":"2024-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10490099","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal of Indoor and Seamless Positioning and Navigation","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10490099/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Ultra wideband (UWB) signals are a promising choice for indoor positioning applications, since they are able to penetrate walls to a certain extent. Nevertheless, signal reflections and non-line-of-sight propagation cause bias in the measured range. This ranging error can be corrected with machine learning (ML) methods, such as convolutional neural networks (CNNs). However, these ML models often generalize poorly between different environments. In this work we present an instance-based transfer learning (TL) approach, that enables generalizing a CNN-based ranging error mitigation approach to a new situation with only a few unlabeled training samples. The performance of the UWB error correction approach is demonstrated in a real-life infrastructure-free cooperative positioning setting.
无处不在的 UWB 测距误差缓解技术在无基础设施合作定位中的应用
超宽带(UWB)信号能够在一定程度上穿透墙壁,因此是室内定位应用的理想选择。然而,信号反射和非视距传播会导致测量范围出现偏差。这种测距误差可以通过机器学习(ML)方法(如卷积神经网络(CNN))来纠正。然而,这些 ML 模型在不同环境之间的泛化能力往往很差。在这项工作中,我们提出了一种基于实例的迁移学习(TL)方法,只需少量未标记的训练样本,就能将基于卷积神经网络的测距误差缓解方法推广到新的环境中。我们在现实生活中的无基础设施合作定位环境中演示了 UWB 误差修正方法的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信