Maija Mäkelä;Martta-Kaisa Olkkonen;Martti Kirkko-Jaakkola;Toni Hammarberg;Tuomo Malkamäki;Jesperi Rantanen;Sanna Kaasalainen
{"title":"Ubiquitous UWB Ranging Error Mitigation With Application to Infrastructure-Free Cooperative Positioning","authors":"Maija Mäkelä;Martta-Kaisa Olkkonen;Martti Kirkko-Jaakkola;Toni Hammarberg;Tuomo Malkamäki;Jesperi Rantanen;Sanna Kaasalainen","doi":"10.1109/JISPIN.2024.3384909","DOIUrl":null,"url":null,"abstract":"Ultra wideband (UWB) signals are a promising choice for indoor positioning applications, since they are able to penetrate walls to a certain extent. Nevertheless, signal reflections and non-line-of-sight propagation cause bias in the measured range. This ranging error can be corrected with machine learning (ML) methods, such as convolutional neural networks (CNNs). However, these ML models often generalize poorly between different environments. In this work we present an instance-based transfer learning (TL) approach, that enables generalizing a CNN-based ranging error mitigation approach to a new situation with only a few unlabeled training samples. The performance of the UWB error correction approach is demonstrated in a real-life infrastructure-free cooperative positioning setting.","PeriodicalId":100621,"journal":{"name":"IEEE Journal of Indoor and Seamless Positioning and Navigation","volume":"2 ","pages":"143-150"},"PeriodicalIF":0.0000,"publicationDate":"2024-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10490099","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal of Indoor and Seamless Positioning and Navigation","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10490099/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Ultra wideband (UWB) signals are a promising choice for indoor positioning applications, since they are able to penetrate walls to a certain extent. Nevertheless, signal reflections and non-line-of-sight propagation cause bias in the measured range. This ranging error can be corrected with machine learning (ML) methods, such as convolutional neural networks (CNNs). However, these ML models often generalize poorly between different environments. In this work we present an instance-based transfer learning (TL) approach, that enables generalizing a CNN-based ranging error mitigation approach to a new situation with only a few unlabeled training samples. The performance of the UWB error correction approach is demonstrated in a real-life infrastructure-free cooperative positioning setting.
超宽带(UWB)信号能够在一定程度上穿透墙壁,因此是室内定位应用的理想选择。然而,信号反射和非视距传播会导致测量范围出现偏差。这种测距误差可以通过机器学习(ML)方法(如卷积神经网络(CNN))来纠正。然而,这些 ML 模型在不同环境之间的泛化能力往往很差。在这项工作中,我们提出了一种基于实例的迁移学习(TL)方法,只需少量未标记的训练样本,就能将基于卷积神经网络的测距误差缓解方法推广到新的环境中。我们在现实生活中的无基础设施合作定位环境中演示了 UWB 误差修正方法的性能。