{"title":"Organic thin film transistor review based on their structures, materials, performance parameters, operating principle, and applications","authors":"Somvir Jakher, Rekha Yadav","doi":"10.1016/j.mee.2024.112193","DOIUrl":null,"url":null,"abstract":"<div><p>Current research focuses on developing inexpensive, adaptable, portable, wearable electronic devices. Organic transistor-based devices play a crucial contribution in these developments. These devices have a low-temperature fabrication process, making it possible to use an extensive range of flexible substrates like cloth, paper, foil, fiber, and plastic. The article discusses a variety of materials used for different layers of the Organic Thin Film Transistor (OTFT). Also highlighting the structural variation, with their performance metrics, which include current, threshold voltage (<span><math><msub><mi>V</mi><mi>T</mi></msub></math></span>), mobility (<span><math><mi>μ</mi></math></span>), subthreshold slope (SS), and current ratio. Additionally, it presents an insight into the operating principle of OTFT to comprehend the conduction process better. A study is carried out for dielectric materials, including organic, inorganic, Self-assembled monolayer (SAM), hybrid, and nanocomposite, along with their benefits and drawbacks. The paper further discusses some crucial uses of organic transistors, such as low-cost Radio frequency identification tag (RFID), organic memory having the quality of three memory types, organic inverters, Deoxyribonucleic Acid (DNA) sensors, Active matrix displays, Gas sensors, Pressure sensors and Chemical sensors adopted two kinds of chemical detection methods from human body and environment. Finally, the article discusses the issues and future prospects of OTFT.</p></div>","PeriodicalId":18557,"journal":{"name":"Microelectronic Engineering","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2024-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microelectronic Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167931724000625","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Current research focuses on developing inexpensive, adaptable, portable, wearable electronic devices. Organic transistor-based devices play a crucial contribution in these developments. These devices have a low-temperature fabrication process, making it possible to use an extensive range of flexible substrates like cloth, paper, foil, fiber, and plastic. The article discusses a variety of materials used for different layers of the Organic Thin Film Transistor (OTFT). Also highlighting the structural variation, with their performance metrics, which include current, threshold voltage (), mobility (), subthreshold slope (SS), and current ratio. Additionally, it presents an insight into the operating principle of OTFT to comprehend the conduction process better. A study is carried out for dielectric materials, including organic, inorganic, Self-assembled monolayer (SAM), hybrid, and nanocomposite, along with their benefits and drawbacks. The paper further discusses some crucial uses of organic transistors, such as low-cost Radio frequency identification tag (RFID), organic memory having the quality of three memory types, organic inverters, Deoxyribonucleic Acid (DNA) sensors, Active matrix displays, Gas sensors, Pressure sensors and Chemical sensors adopted two kinds of chemical detection methods from human body and environment. Finally, the article discusses the issues and future prospects of OTFT.
期刊介绍:
Microelectronic Engineering is the premier nanoprocessing, and nanotechnology journal focusing on fabrication of electronic, photonic, bioelectronic, electromechanic and fluidic devices and systems, and their applications in the broad areas of electronics, photonics, energy, life sciences, and environment. It covers also the expanding interdisciplinary field of "more than Moore" and "beyond Moore" integrated nanoelectronics / photonics and micro-/nano-/bio-systems. Through its unique mixture of peer-reviewed articles, reviews, accelerated publications, short and Technical notes, and the latest research news on key developments, Microelectronic Engineering provides comprehensive coverage of this exciting, interdisciplinary and dynamic new field for researchers in academia and professionals in industry.