Shumei Wang , Junwei Luan , Siyu Li , Jinhao Ma , Lin Chen , Yi Wang , Shirong Liu
{"title":"Litter quality and decomposer complexity co-drive effect of drought on decomposition","authors":"Shumei Wang , Junwei Luan , Siyu Li , Jinhao Ma , Lin Chen , Yi Wang , Shirong Liu","doi":"10.1016/j.fecs.2024.100194","DOIUrl":null,"url":null,"abstract":"<div><p>Litter decomposition is key to ecosystem carbon (C) and nutrient cycling, but this process is anticipated to weaken due to projected more extensive and prolonged drought. Yet how litter quality and decomposer community complexity regulate decomposition in response to drought is less understood. Here, in a five-year manipulative drought experiment in a Masson pine forest, leaf litter from four subtropical tree species (<em>Quercus griffithii</em> Hook.f. & Thomson ex Miq., <em>Acacia mangium</em> Willd., <em>Pinus massoniana</em> Lamb., <em>Castanopsis hystrix</em> Miq.) representing different qualities was decomposed for 350 d in litterbags of three different mesh sizes (i.e., 0.05, 1, and 5 mm), respectively, under natural conditions and a 50% throughfall rain exclusion treatment. Litterbags of increasing mesh sizes discriminate decomposer communities (i.e., microorganisms, microorganisms and mesofauna, microorganisms and meso- and macrofauna) that access the litter and represent an increasing complexity. The amount of litter C and nitrogen (N) loss, and changes in their ratio (C/N<sub>loss</sub>), as well as small and medium-sized decomposers including microorganisms, nematodes, and arthropods, were investigated. We found that drought did not affect C and N loss but decreased C/N<sub>loss</sub> (i.e., decomposer N use efficiency) of leaf litter irrespective of litter quality and decomposer complexity. However, changes in the C/N<sub>loss</sub> and the drought effect on C loss were both dependent on litter quality, while drought and decomposer complexity interactively affected litter C and N loss. Increasing decomposer community complexity enhanced litter decomposition and allowing additional access of meso- and macro-fauna to litterbags mitigated the negative drought effect on the microbial-driven decomposition. Furthermore, both the increased diversity and altered trophic structure of nematode due to drought contributed to the mitigation effects via cascading interactions. Our results show that litter quality and soil decomposer community complexity co-drive the effect of drought on litter decomposition. This experimental finding provides a new insight into the mechanisms controlling forest floor C and nutrient cycling under future global change scenarios.</p></div>","PeriodicalId":54270,"journal":{"name":"Forest Ecosystems","volume":"11 ","pages":"Article 100194"},"PeriodicalIF":3.8000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2197562024000307/pdfft?md5=d6b9daf948b6e70e1c9585558bbb1e42&pid=1-s2.0-S2197562024000307-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Forest Ecosystems","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2197562024000307","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FORESTRY","Score":null,"Total":0}
引用次数: 0
Abstract
Litter decomposition is key to ecosystem carbon (C) and nutrient cycling, but this process is anticipated to weaken due to projected more extensive and prolonged drought. Yet how litter quality and decomposer community complexity regulate decomposition in response to drought is less understood. Here, in a five-year manipulative drought experiment in a Masson pine forest, leaf litter from four subtropical tree species (Quercus griffithii Hook.f. & Thomson ex Miq., Acacia mangium Willd., Pinus massoniana Lamb., Castanopsis hystrix Miq.) representing different qualities was decomposed for 350 d in litterbags of three different mesh sizes (i.e., 0.05, 1, and 5 mm), respectively, under natural conditions and a 50% throughfall rain exclusion treatment. Litterbags of increasing mesh sizes discriminate decomposer communities (i.e., microorganisms, microorganisms and mesofauna, microorganisms and meso- and macrofauna) that access the litter and represent an increasing complexity. The amount of litter C and nitrogen (N) loss, and changes in their ratio (C/Nloss), as well as small and medium-sized decomposers including microorganisms, nematodes, and arthropods, were investigated. We found that drought did not affect C and N loss but decreased C/Nloss (i.e., decomposer N use efficiency) of leaf litter irrespective of litter quality and decomposer complexity. However, changes in the C/Nloss and the drought effect on C loss were both dependent on litter quality, while drought and decomposer complexity interactively affected litter C and N loss. Increasing decomposer community complexity enhanced litter decomposition and allowing additional access of meso- and macro-fauna to litterbags mitigated the negative drought effect on the microbial-driven decomposition. Furthermore, both the increased diversity and altered trophic structure of nematode due to drought contributed to the mitigation effects via cascading interactions. Our results show that litter quality and soil decomposer community complexity co-drive the effect of drought on litter decomposition. This experimental finding provides a new insight into the mechanisms controlling forest floor C and nutrient cycling under future global change scenarios.
Forest EcosystemsEnvironmental Science-Nature and Landscape Conservation
CiteScore
7.10
自引率
4.90%
发文量
1115
审稿时长
22 days
期刊介绍:
Forest Ecosystems is an open access, peer-reviewed journal publishing scientific communications from any discipline that can provide interesting contributions about the structure and dynamics of "natural" and "domesticated" forest ecosystems, and their services to people. The journal welcomes innovative science as well as application oriented work that will enhance understanding of woody plant communities. Very specific studies are welcome if they are part of a thematic series that provides some holistic perspective that is of general interest.