Study of optimal subalgebras, invariant solutions, and conservation laws for a Verhulst biological population model

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Aniruddha Kumar Sharma, Rajan Arora
{"title":"Study of optimal subalgebras, invariant solutions, and conservation laws for a Verhulst biological population model","authors":"Aniruddha Kumar Sharma,&nbsp;Rajan Arora","doi":"10.1111/sapm.12692","DOIUrl":null,"url":null,"abstract":"<p>In this research, the (2+1)-dimensional normal biological population model, incorporating the Verhulst law for population growth, is employed to explore species population dynamics. Employing Lie symmetry analysis, we address a nonlinear degenerate parabolic partial differential equation, yielding much-improved results. This analysis includes computing one-dimensional optimal subalgebras, reduced ordinary differential equations, and obtaining invariant solutions with a visual depiction of the physical behavior of the Verhulst biological population model through symmetry group transformations. Additionally, the multiplier method leads to novel conservation laws and potential systems not locally connected to the governing partial differential equation (PDE). These findings have significant implications for understanding and controlling biological populations, offering insights for applications in ecology and the environment.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/sapm.12692","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

In this research, the (2+1)-dimensional normal biological population model, incorporating the Verhulst law for population growth, is employed to explore species population dynamics. Employing Lie symmetry analysis, we address a nonlinear degenerate parabolic partial differential equation, yielding much-improved results. This analysis includes computing one-dimensional optimal subalgebras, reduced ordinary differential equations, and obtaining invariant solutions with a visual depiction of the physical behavior of the Verhulst biological population model through symmetry group transformations. Additionally, the multiplier method leads to novel conservation laws and potential systems not locally connected to the governing partial differential equation (PDE). These findings have significant implications for understanding and controlling biological populations, offering insights for applications in ecology and the environment.

韦尔赫斯特生物种群模型的最优子代数、不变解和守恒定律研究
本研究采用 (2+1) 维正态分布生物种群模型,结合韦尔赫斯特种群增长定律,探讨物种种群动态。利用李对称分析,我们解决了一个非线性退化抛物线偏微分方程,结果大有改进。该分析包括计算一维最优子代数、还原常微分方程,以及通过对称组变换获得不变解,并直观地描述了 Verhulst 生物种群模型的物理行为。此外,乘法器方法还导致了与支配偏微分方程(PDE)没有局部联系的新守恒定律和势能系统。这些发现对理解和控制生物种群具有重要意义,为生态学和环境领域的应用提供了启示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信