Understanding the role of the fructose-1,6-bisphosphatase gene for enhancing the photosynthetic rate in Arabidopsis thaliana

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Fatima Gulzar, Raza Ahmad, Suk-Yoon Kwan, Zulqurnain Khan, Sulaiman Ali Alharbi, Mohmmad Maroof Shah, Shoaib ur Rehman, Maria Siddique, Mohammad Javed Ansari, Irum Shahzadi, Muhammad Abu Bakar Saddique, Muhmmad Zahid Ishaq, Ummara Waheed
{"title":"Understanding the role of the fructose-1,6-bisphosphatase gene for enhancing the photosynthetic rate in Arabidopsis thaliana","authors":"Fatima Gulzar, Raza Ahmad, Suk-Yoon Kwan, Zulqurnain Khan, Sulaiman Ali Alharbi, Mohmmad Maroof Shah, Shoaib ur Rehman, Maria Siddique, Mohammad Javed Ansari, Irum Shahzadi, Muhammad Abu Bakar Saddique, Muhmmad Zahid Ishaq, Ummara Waheed","doi":"10.1071/fp24034","DOIUrl":null,"url":null,"abstract":"<p>Transgenic <i>Arabidopsis thaliana</i> (ecotype Columbia) was successfully transformed with the gene <i>fructose-1,6-bisphosphatase</i> (<i>FBPas</i>e) and named as <i>AtFBPase</i> plants. Transgenic plants exhibited stable transformation, integration and significantly higher expressions for the transformed gene. Morphological evaluation of transgenic plants showed increased plant height (35 cm), number of leaves (25), chlorophyll contents (28%), water use efficiency (increased from 1.5 to 2.6 μmol CO<sub>2</sub> μmol<sup>−1</sup> H<sub>2</sub>O) and stomatal conductance (20%), which all resulted in an enhanced photosynthetic rate (2.7 μmol m<sup>−2</sup> s<sup>−1</sup>) compared to wild type plants. This study suggests the vital role of <i>FBPase</i> gene in the modification of regulatory pathways to enhance the photosynthetic rate, which can also be utilised for economic crops in future.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1071/fp24034","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

Transgenic Arabidopsis thaliana (ecotype Columbia) was successfully transformed with the gene fructose-1,6-bisphosphatase (FBPase) and named as AtFBPase plants. Transgenic plants exhibited stable transformation, integration and significantly higher expressions for the transformed gene. Morphological evaluation of transgenic plants showed increased plant height (35 cm), number of leaves (25), chlorophyll contents (28%), water use efficiency (increased from 1.5 to 2.6 μmol CO2 μmol−1 H2O) and stomatal conductance (20%), which all resulted in an enhanced photosynthetic rate (2.7 μmol m−2 s−1) compared to wild type plants. This study suggests the vital role of FBPase gene in the modification of regulatory pathways to enhance the photosynthetic rate, which can also be utilised for economic crops in future.

了解果糖-1,6-二磷酸酶基因在提高拟南芥光合速率方面的作用
转基因拟南芥(生态型哥伦比亚)成功转化了果糖-1,6-二磷酸酶(FBPase)基因,并命名为 AtFBPase 植株。转基因植株表现出稳定的转化和整合,且转化基因的表达量显著提高。转基因植株的形态学评估结果显示,与野生型植株相比,转基因植株的株高(35 厘米)、叶片数(25 片)、叶绿素含量(28%)、水分利用效率(从 1.5 μmol CO2 μmol-1 H2O 增加到 2.6 μmol)和气孔导度(20%)均有所增加,从而提高了光合速率(2.7 μmol m-2 s-1)。这项研究表明,FBPase 基因在改变调节途径以提高光合速率方面发挥着重要作用,未来也可用于经济作物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信