Tight Upper Bound for the Maximal Expectation Value of the N $N$ -Partite Generalized Svetlichny Operator

IF 4.4 Q1 OPTICS
Youwang Xiao, Zong Wang, Wen-Na Zhao, Ming Li
{"title":"Tight Upper Bound for the Maximal Expectation Value of the \n \n N\n $N$\n -Partite Generalized Svetlichny Operator","authors":"Youwang Xiao,&nbsp;Zong Wang,&nbsp;Wen-Na Zhao,&nbsp;Ming Li","doi":"10.1002/qute.202400101","DOIUrl":null,"url":null,"abstract":"<p>Genuine multipartite non-locality is not only of fundamental interest but also serves as an important resource for quantum information theory. The <span></span><math>\n <semantics>\n <mi>N</mi>\n <annotation>$N$</annotation>\n </semantics></math>-partite scenario and provide an analytical upper bound on the maximal expectation value of the generalized Svetlichny inequality achieved by an arbitrary <span></span><math>\n <semantics>\n <mi>N</mi>\n <annotation>$N$</annotation>\n </semantics></math>-qubit system is considered. Furthermore, the constraints on quantum states for which the upper bound is tight are also presented and illustrated by noisy generalized Greenberger-Horne-Zeilinger states. Especially, the new techniques proposed to derive the upper bound allow more insights into the structure of the generalized Svetlichny operator and enable us to systematically investigate the relevant properties. As an operational approach, the variation of the correlation matrix defined makes it more convenient to search for suitable unit vectors that satisfy the tightness conditions. Finally, the results give feasible experimental implementations in detecting the genuine multipartite non-locality and can potentially be applied to other quantum information processing tasks.</p>","PeriodicalId":72073,"journal":{"name":"Advanced quantum technologies","volume":null,"pages":null},"PeriodicalIF":4.4000,"publicationDate":"2024-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced quantum technologies","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/qute.202400101","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

Abstract

Genuine multipartite non-locality is not only of fundamental interest but also serves as an important resource for quantum information theory. The N $N$ -partite scenario and provide an analytical upper bound on the maximal expectation value of the generalized Svetlichny inequality achieved by an arbitrary N $N$ -qubit system is considered. Furthermore, the constraints on quantum states for which the upper bound is tight are also presented and illustrated by noisy generalized Greenberger-Horne-Zeilinger states. Especially, the new techniques proposed to derive the upper bound allow more insights into the structure of the generalized Svetlichny operator and enable us to systematically investigate the relevant properties. As an operational approach, the variation of the correlation matrix defined makes it more convenient to search for suitable unit vectors that satisfy the tightness conditions. Finally, the results give feasible experimental implementations in detecting the genuine multipartite non-locality and can potentially be applied to other quantum information processing tasks.

Abstract Image

N$N$ 部分广义斯维特利希尼算子最大期望值的严格上限
真正的多方非位置性不仅具有根本意义,而且是量子信息论的重要资源。本研究考虑了-部分情景,并为任意-量子比特系统实现的广义斯维特里奇尼不等式的最大期望值提供了一个分析上限。此外,还提出了上界很紧的量子态的约束条件,并通过有噪声的广义格林伯格-霍恩-蔡林格态进行了说明。特别是,为推导上界而提出的新技术让我们对广义斯维特里尼算子的结构有了更多的了解,并使我们能够系统地研究相关性质。作为一种操作方法,定义的相关矩阵的变化使我们更方便地寻找满足严密性条件的合适单位向量。最后,研究结果给出了检测真正多方非局域性的可行实验方法,并有可能应用于其他量子信息处理任务。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.90
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信