İlkkan Abakan, Cahit Özbilenler, Selma Ustürk, Namık Refik Kerküklü, Hayrettin Ozan Gulcan, Mümtaz Güran, Mustafa Gazi
{"title":"Preparation of Carboxymethyl Cellulose/Polyvinyl Alcohol Cryogels for the Removal of Methylene Blue Dye from Aqueous Media","authors":"İlkkan Abakan, Cahit Özbilenler, Selma Ustürk, Namık Refik Kerküklü, Hayrettin Ozan Gulcan, Mümtaz Güran, Mustafa Gazi","doi":"10.3103/S1063455X24020024","DOIUrl":null,"url":null,"abstract":"<p>In this study ciprofloxacin-loaded carboxymethyl cellulose (CMC)/ polyvinyl alcohol (PVA) cryogel systems were prepared by using low molecular weight PVA. The high degree of segmental mobility of PVA molecules makes them more prone to form CMC/PVA cryogels via hydrogen bondings with CMC. Physically crosslinked gels were characterised by using Fourier-transform infrared spectroscopy (FTIR). Swelling results have shown that low molecular weight PVA had a fast-swelling rate and this can explain the fast release of ciprofloxacin within 30 min from CMC/PVA cryogels during release studies. Release of ciprofloxacin from the CMC/PVA cryogel system was the best fit to first-order release model with <i>R</i><sup>2</sup> = 0.9980. It was found that the release exponent is lower than 0.45 and it is a good indication of quasi-Fickian diffusion, which means that ciprofloxacin can be released without swelling of the cryogel. Ciprofloxacin was found to have even better antimicrobial activity against <i>E. coli</i> than positive control as having a higher inhibition zone. In addition, CMC/PVA cryogels can be used for water treatment application to remove Methylene Blue (MB) dye from water and this was supported by adsorption kinetics and isotherm studies.</p>","PeriodicalId":680,"journal":{"name":"Journal of Water Chemistry and Technology","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2024-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Water Chemistry and Technology","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.3103/S1063455X24020024","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
In this study ciprofloxacin-loaded carboxymethyl cellulose (CMC)/ polyvinyl alcohol (PVA) cryogel systems were prepared by using low molecular weight PVA. The high degree of segmental mobility of PVA molecules makes them more prone to form CMC/PVA cryogels via hydrogen bondings with CMC. Physically crosslinked gels were characterised by using Fourier-transform infrared spectroscopy (FTIR). Swelling results have shown that low molecular weight PVA had a fast-swelling rate and this can explain the fast release of ciprofloxacin within 30 min from CMC/PVA cryogels during release studies. Release of ciprofloxacin from the CMC/PVA cryogel system was the best fit to first-order release model with R2 = 0.9980. It was found that the release exponent is lower than 0.45 and it is a good indication of quasi-Fickian diffusion, which means that ciprofloxacin can be released without swelling of the cryogel. Ciprofloxacin was found to have even better antimicrobial activity against E. coli than positive control as having a higher inhibition zone. In addition, CMC/PVA cryogels can be used for water treatment application to remove Methylene Blue (MB) dye from water and this was supported by adsorption kinetics and isotherm studies.
期刊介绍:
Journal of Water Chemistry and Technology focuses on water and wastewater treatment, water pollution monitoring, water purification, and similar topics. The journal publishes original scientific theoretical and experimental articles in the following sections: new developments in the science of water; theoretical principles of water treatment and technology; physical chemistry of water treatment processes; analytical water chemistry; analysis of natural and waste waters; water treatment technology and demineralization of water; biological methods of water treatment; and also solicited critical reviews summarizing the latest findings. The journal welcomes manuscripts from all countries in the English or Ukrainian language. All manuscripts are peer-reviewed.