PABPC1 silencing inhibits pancreatic cancer cell proliferation and EMT, and induces apoptosis via PI3K/AKT pathway

IF 2 4区 生物学 Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Changren Zhu, Cuimei Wang, Xiaodong Wang, Shuangshuang Dong, Qing Xu, Jun Zheng
{"title":"PABPC1 silencing inhibits pancreatic cancer cell proliferation and EMT, and induces apoptosis via PI3K/AKT pathway","authors":"Changren Zhu, Cuimei Wang, Xiaodong Wang, Shuangshuang Dong, Qing Xu, Jun Zheng","doi":"10.1007/s10616-024-00626-1","DOIUrl":null,"url":null,"abstract":"<p>Pancreatic cancer is difficult to manage owing to the challenges involved in its treatment and nursing. This study aimed to clarify the roles and mechanisms of action of Poly (A)-binding protein cytoplasmic 1 (PABPC1) on pancreatic cancer. The expression of PABPC1 in pancreatic cancer tissues and cell lines was detected using RT-qPCR and western blotting. The effects of PABPC1 on proliferation, apoptosis, epithelial-mesenchymal transition (EMT), and the PI3K/AKT signaling pathway in pancreatic cancer cells were further investigated using MTT assays, flow cytometry, and western blotting. The expression of PABPC1 was significantly upregulated in pancreatic cancer tissues and cells, whereas PABPC1 downregulation inhibited pancreatic cancer cell proliferation, induced apoptosis, decreased the expression of EMT-associated proteins, and exerted a regulatory effect by inhibiting the PI3K/AKT signaling pathway. In addition, the findings indicated that PABPC1 over-expression significantly promoted pancreatic cancer cell proliferation, inhibited apoptosis, decreased the expression of E-cadherin, enhanced N-cadherin expression, and activating the PI3K/AKT signaling pathway. PABPC1 silencing significantly inhibited proliferation and EMT and induced apoptosis in pancreatic cancer cells. These findings provide novel insights into the role of PABPC1 in the development of pancreatic cancer.</p>","PeriodicalId":10890,"journal":{"name":"Cytotechnology","volume":"94 1","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2024-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cytotechnology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s10616-024-00626-1","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Pancreatic cancer is difficult to manage owing to the challenges involved in its treatment and nursing. This study aimed to clarify the roles and mechanisms of action of Poly (A)-binding protein cytoplasmic 1 (PABPC1) on pancreatic cancer. The expression of PABPC1 in pancreatic cancer tissues and cell lines was detected using RT-qPCR and western blotting. The effects of PABPC1 on proliferation, apoptosis, epithelial-mesenchymal transition (EMT), and the PI3K/AKT signaling pathway in pancreatic cancer cells were further investigated using MTT assays, flow cytometry, and western blotting. The expression of PABPC1 was significantly upregulated in pancreatic cancer tissues and cells, whereas PABPC1 downregulation inhibited pancreatic cancer cell proliferation, induced apoptosis, decreased the expression of EMT-associated proteins, and exerted a regulatory effect by inhibiting the PI3K/AKT signaling pathway. In addition, the findings indicated that PABPC1 over-expression significantly promoted pancreatic cancer cell proliferation, inhibited apoptosis, decreased the expression of E-cadherin, enhanced N-cadherin expression, and activating the PI3K/AKT signaling pathway. PABPC1 silencing significantly inhibited proliferation and EMT and induced apoptosis in pancreatic cancer cells. These findings provide novel insights into the role of PABPC1 in the development of pancreatic cancer.

Abstract Image

沉默 PABPC1 可抑制胰腺癌细胞增殖和 EMT,并通过 PI3K/AKT 通路诱导细胞凋亡
胰腺癌是一种难以控制的癌症,因为其治疗和护理都面临挑战。本研究旨在阐明细胞质多聚(A)结合蛋白1(PABPC1)在胰腺癌中的作用及其机制。研究采用RT-qPCR和Western印迹法检测了PABPC1在胰腺癌组织和细胞系中的表达。采用 MTT 试验、流式细胞术和 Western 印迹法进一步研究了 PABPC1 对胰腺癌细胞增殖、凋亡、上皮-间质转化(EMT)和 PI3K/AKT 信号通路的影响。结果表明,PABPC1在胰腺癌组织和细胞中的表达明显上调,而下调PABPC1可抑制胰腺癌细胞增殖、诱导细胞凋亡、减少EMT相关蛋白的表达,并通过抑制PI3K/AKT信号通路发挥调控作用。此外,研究结果表明,PABPC1过度表达能显著促进胰腺癌细胞增殖,抑制细胞凋亡,降低E-cadherin的表达,增强N-cadherin的表达,激活PI3K/AKT信号通路。PABPC1沉默能明显抑制胰腺癌细胞的增殖和EMT,并诱导细胞凋亡。这些发现为了解 PABPC1 在胰腺癌发展中的作用提供了新的视角。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Cytotechnology
Cytotechnology 生物-生物工程与应用微生物
CiteScore
4.10
自引率
0.00%
发文量
49
审稿时长
6-12 weeks
期刊介绍: The scope of the Journal includes: 1. The derivation, genetic modification and characterization of cell lines, genetic and phenotypic regulation, control of cellular metabolism, cell physiology and biochemistry related to cell function, performance and expression of cell products. 2. Cell culture techniques, substrates, environmental requirements and optimization, cloning, hybridization and molecular biology, including genomic and proteomic tools. 3. Cell culture systems, processes, reactors, scale-up, and industrial production. Descriptions of the design or construction of equipment, media or quality control procedures, that are ancillary to cellular research. 4. The application of animal/human cells in research in the field of stem cell research including maintenance of stemness, differentiation, genetics, and senescence, cancer research, research in immunology, as well as applications in tissue engineering and gene therapy. 5. The use of cell cultures as a substrate for bioassays, biomedical applications and in particular as a replacement for animal models.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信