{"title":"Treatment of Leather Industry Wastewater Using Coagulation, Ultraviolet/Persulfate Processing and Nanofiltration for Water Recovery","authors":"Ali Rıza Dinçer, Deniz İzlen Çifçi, Feriha Karaca","doi":"10.3103/S1063455X2402005X","DOIUrl":null,"url":null,"abstract":"<p>This study investigated water recovery with the treatment of leather industry processes wastewater (washing, pickling, and degreasing units) using coagulation, ultraviolet/persulfate (UV/PS) treatment, and nanofiltration processes. Coagulation studies were carried out using alum as the coagulant, and the highest chemical oxygen demand (COD) removal efficiency was obtained at pH 7 for all the wastewater. The highest COD and total organic carbon (TOC) removal were 80.9 and 50.5% in the wastewater washing unit (<span>\\({{{\\text{S}}}_{{\\text{2}}}}{\\text{O}}_{8}^{{2 - }}\\)</span> : 8 g/L, pH 7) and 76.5 and 96.1% in the wastewater degreasing unit (<span>\\({{{\\text{S}}}_{{\\text{2}}}}{\\text{O}}_{8}^{{2 - }}\\)</span> : 16 g/L, pH 6) using UV/PS oxidation, respectively. High COD and TOC removal could not be achieved with UV/PS oxidation in the wastewater pickling unit. In the studies performed with NP030 nanofiltration membrane after UV/PS oxidation, the highest permeability and COD removal was achieved at pH 7 under 4 × 10<sup>5</sup> Pa pressure in wastewater washing and degreasing units. After 75 min of nanofiltration at pH 7 in washing and degreasing units, the total filtrate amount was 39.8 and 42.3 L/m<sup>2</sup> h, respectively. COD concentration in the wastewater washing unit decreased from 4434 to 138 mg/L, while it decreased from 5833 to 212 mg/L in the wastewater degreasing unit with coagulation, UV/PS processing, and nanofiltration. As a result, the treatment of leather industry wastewater through separate streams with coagulation, UV/PS, and nanofiltration, washing, and degreasing unit wastewater provides very high COD removal. Also, it has been shown impossible to treat the pickling unit wastewater by UV/PS oxidation.</p>","PeriodicalId":680,"journal":{"name":"Journal of Water Chemistry and Technology","volume":"46 2","pages":"176 - 185"},"PeriodicalIF":0.5000,"publicationDate":"2024-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Water Chemistry and Technology","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.3103/S1063455X2402005X","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
This study investigated water recovery with the treatment of leather industry processes wastewater (washing, pickling, and degreasing units) using coagulation, ultraviolet/persulfate (UV/PS) treatment, and nanofiltration processes. Coagulation studies were carried out using alum as the coagulant, and the highest chemical oxygen demand (COD) removal efficiency was obtained at pH 7 for all the wastewater. The highest COD and total organic carbon (TOC) removal were 80.9 and 50.5% in the wastewater washing unit (\({{{\text{S}}}_{{\text{2}}}}{\text{O}}_{8}^{{2 - }}\) : 8 g/L, pH 7) and 76.5 and 96.1% in the wastewater degreasing unit (\({{{\text{S}}}_{{\text{2}}}}{\text{O}}_{8}^{{2 - }}\) : 16 g/L, pH 6) using UV/PS oxidation, respectively. High COD and TOC removal could not be achieved with UV/PS oxidation in the wastewater pickling unit. In the studies performed with NP030 nanofiltration membrane after UV/PS oxidation, the highest permeability and COD removal was achieved at pH 7 under 4 × 105 Pa pressure in wastewater washing and degreasing units. After 75 min of nanofiltration at pH 7 in washing and degreasing units, the total filtrate amount was 39.8 and 42.3 L/m2 h, respectively. COD concentration in the wastewater washing unit decreased from 4434 to 138 mg/L, while it decreased from 5833 to 212 mg/L in the wastewater degreasing unit with coagulation, UV/PS processing, and nanofiltration. As a result, the treatment of leather industry wastewater through separate streams with coagulation, UV/PS, and nanofiltration, washing, and degreasing unit wastewater provides very high COD removal. Also, it has been shown impossible to treat the pickling unit wastewater by UV/PS oxidation.
期刊介绍:
Journal of Water Chemistry and Technology focuses on water and wastewater treatment, water pollution monitoring, water purification, and similar topics. The journal publishes original scientific theoretical and experimental articles in the following sections: new developments in the science of water; theoretical principles of water treatment and technology; physical chemistry of water treatment processes; analytical water chemistry; analysis of natural and waste waters; water treatment technology and demineralization of water; biological methods of water treatment; and also solicited critical reviews summarizing the latest findings. The journal welcomes manuscripts from all countries in the English or Ukrainian language. All manuscripts are peer-reviewed.