Juanli Chen, Yongqing Luo, Xueyong Zhao, Yan Li, Biao Gao, Ruolan Wang, Yuanxin Lou, Junpeng Mu
{"title":"Physiological responses of Bassia dasyphylla to drought during seed germination from different provenances","authors":"Juanli Chen, Yongqing Luo, Xueyong Zhao, Yan Li, Biao Gao, Ruolan Wang, Yuanxin Lou, Junpeng Mu","doi":"10.3389/fevo.2024.1358694","DOIUrl":null,"url":null,"abstract":"<jats:italic>Bassia dasyphylla</jats:italic> is a prevalent herbaceous plant that exhibits enhanced resilience to dryness and elevated temperatures. It is frequently found in dispersed or grouped formation on sandy soil within steppe, semi-desert, and desert regions. Herein, we conducted experiments to examine the growth and physiological traits of <jats:italic>B. dasyphylla</jats:italic> seeds originated from various regions in response to water scarcity. The study seeks to investigate the ability of these seeds to germinate under drought conditions and offer valuable insights for the development and breeding of high-quality germplasm resources in Inner Mongolia. The results demonstrated that <jats:italic>B. dasyphylla</jats:italic> originating from desert steppe (DS) exhibited a greater capacity to endure drought conditions in comparison to its counterparts from sandy land (SL). At a water potential of -0.30 MPa, the Seed germination rate from DS was 33.3%, while from SL it was 22.7%. With the increase in drought duration and intensity, germination rate, plumule length, both single-seed weight (SSW) and seed water content (SWC) of <jats:italic>B. dasyphylla</jats:italic> declined. The protective enzyme activity exhibited an initial increase, followed by a subsequent decline as the duration of the drought increased. Notably, we found that the protective enzyme activity from DS was higher than that from SL. During the initial and intermediate stages of dryness, the soluble sugar and protein of the plant from DS effectively inhibited the peroxidation of membrane lipids, whereas the osmoregulatory properties from SL did not have a significant impact. The findings suggest that the ability of <jats:italic>B. dasyphylla</jats:italic> to withstand drought conditions in DS can be attributed to its elevated amounts of protective enzymes and osmoregulatory factors, which serve to safeguard the cell membrane during periods of drought.","PeriodicalId":12367,"journal":{"name":"Frontiers in Ecology and Evolution","volume":"101 1","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2024-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Ecology and Evolution","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.3389/fevo.2024.1358694","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Bassia dasyphylla is a prevalent herbaceous plant that exhibits enhanced resilience to dryness and elevated temperatures. It is frequently found in dispersed or grouped formation on sandy soil within steppe, semi-desert, and desert regions. Herein, we conducted experiments to examine the growth and physiological traits of B. dasyphylla seeds originated from various regions in response to water scarcity. The study seeks to investigate the ability of these seeds to germinate under drought conditions and offer valuable insights for the development and breeding of high-quality germplasm resources in Inner Mongolia. The results demonstrated that B. dasyphylla originating from desert steppe (DS) exhibited a greater capacity to endure drought conditions in comparison to its counterparts from sandy land (SL). At a water potential of -0.30 MPa, the Seed germination rate from DS was 33.3%, while from SL it was 22.7%. With the increase in drought duration and intensity, germination rate, plumule length, both single-seed weight (SSW) and seed water content (SWC) of B. dasyphylla declined. The protective enzyme activity exhibited an initial increase, followed by a subsequent decline as the duration of the drought increased. Notably, we found that the protective enzyme activity from DS was higher than that from SL. During the initial and intermediate stages of dryness, the soluble sugar and protein of the plant from DS effectively inhibited the peroxidation of membrane lipids, whereas the osmoregulatory properties from SL did not have a significant impact. The findings suggest that the ability of B. dasyphylla to withstand drought conditions in DS can be attributed to its elevated amounts of protective enzymes and osmoregulatory factors, which serve to safeguard the cell membrane during periods of drought.
期刊介绍:
Frontiers in Ecology and Evolution publishes rigorously peer-reviewed research across fundamental and applied sciences, to provide ecological and evolutionary insights into our natural and anthropogenic world, and how it should best be managed. Field Chief Editor Mark A. Elgar at the University of Melbourne is supported by an outstanding Editorial Board of international researchers. This multidisciplinary open-access journal is at the forefront of disseminating and communicating scientific knowledge and impactful discoveries to researchers, academics and the public worldwide.
Eminent biologist and theist Theodosius Dobzhansky’s astute observation that “Nothing in biology makes sense except in the light of evolution” has arguably even broader relevance now than when it was first penned in The American Biology Teacher in 1973. One could similarly argue that not much in evolution makes sense without recourse to ecological concepts: understanding diversity — from microbial adaptations to species assemblages — requires insights from both ecological and evolutionary disciplines. Nowadays, technological developments from other fields allow us to address unprecedented ecological and evolutionary questions of astonishing detail, impressive breadth and compelling inference.
The specialty sections of Frontiers in Ecology and Evolution will publish, under a single platform, contemporary, rigorous research, reviews, opinions, and commentaries that cover the spectrum of ecological and evolutionary inquiry, both fundamental and applied. Articles are peer-reviewed according to the Frontiers review guidelines, which evaluate manuscripts on objective editorial criteria. Through this unique, Frontiers platform for open-access publishing and research networking, Frontiers in Ecology and Evolution aims to provide colleagues and the broader community with ecological and evolutionary insights into our natural and anthropogenic world, and how it might best be managed.