SURYADEEPTO NAG, ANANDA SHIKHARA BHAT, SIDDHARTHA P. CHAKRABARTY
{"title":"STUDYING THE AGE OF ONSET AND DETECTION OF CHRONIC MYELOID LEUKEMIA USING A THREE-STAGE STOCHASTIC MODEL","authors":"SURYADEEPTO NAG, ANANDA SHIKHARA BHAT, SIDDHARTHA P. CHAKRABARTY","doi":"10.1142/s0218339024500190","DOIUrl":null,"url":null,"abstract":"<p>Chronic Myeloid Leukemia (CML) is a biphasic malignant clonal disorder that progresses, first with a chronic phase, where the cells have enhanced proliferation only, and then to a blast phase, where the cells have the ability of self-renewal. It is well recognized that the Philadelphia chromosome (which contains the BCR-ABL fusion gene) is the “hallmark of CML”. However, empirical studies have shown that the mere presence of BCR-ABL may not be a sufficient condition for the development of CML, and further modifications related to tumor suppressors may be necessary. Accordingly, we develop a three-mutation stochastic model of CML progression, with the three stages corresponding to the non-malignant cells with BCR-ABL presence, the malignant cells in the chronic phase, and the malignant cells in the blast phase. We demonstrate that the model predictions agree with age incidence data from the United States. Finally, we develop a framework for the retrospective estimation of the time of onset of malignancy, from the time of detection of the cancer.</p>","PeriodicalId":54872,"journal":{"name":"Journal of Biological Systems","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2024-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biological Systems","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1142/s0218339024500190","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Chronic Myeloid Leukemia (CML) is a biphasic malignant clonal disorder that progresses, first with a chronic phase, where the cells have enhanced proliferation only, and then to a blast phase, where the cells have the ability of self-renewal. It is well recognized that the Philadelphia chromosome (which contains the BCR-ABL fusion gene) is the “hallmark of CML”. However, empirical studies have shown that the mere presence of BCR-ABL may not be a sufficient condition for the development of CML, and further modifications related to tumor suppressors may be necessary. Accordingly, we develop a three-mutation stochastic model of CML progression, with the three stages corresponding to the non-malignant cells with BCR-ABL presence, the malignant cells in the chronic phase, and the malignant cells in the blast phase. We demonstrate that the model predictions agree with age incidence data from the United States. Finally, we develop a framework for the retrospective estimation of the time of onset of malignancy, from the time of detection of the cancer.
期刊介绍:
The Journal of Biological Systems is published quarterly. The goal of the Journal is to promote interdisciplinary approaches in Biology and in Medicine, and the study of biological situations with a variety of tools, including mathematical and general systems methods. The Journal solicits original research papers and survey articles in areas that include (but are not limited to):
Complex systems studies; isomorphies; nonlinear dynamics; entropy; mathematical tools and systems theories with applications in Biology and Medicine.
Interdisciplinary approaches in Biology and Medicine; transfer of methods from one discipline to another; integration of biological levels, from atomic to molecular, macromolecular, cellular, and organic levels; animal biology; plant biology.
Environmental studies; relationships between individuals, populations, communities and ecosystems; bioeconomics, management of renewable resources; hierarchy theory; integration of spatial and time scales.
Evolutionary biology; co-evolutions; genetics and evolution; branching processes and phyllotaxis.
Medical systems; physiology; cardiac modeling; computer models in Medicine; cancer research; epidemiology.
Numerical simulations and computations; numerical study and analysis of biological data.
Epistemology; history of science.
The journal will also publish book reviews.