Mikhail Baloban, Ludmila A. Kasatkina, Vladislav V. Verkhusha
{"title":"iLight2: A near‐infrared optogenetic tool for gene transcription with low background activation","authors":"Mikhail Baloban, Ludmila A. Kasatkina, Vladislav V. Verkhusha","doi":"10.1002/pro.4993","DOIUrl":null,"url":null,"abstract":"Optogenetic tools (OTs) operating in the far‐red and near‐infrared (NIR) region offer advantages for light‐controlling biological processes in deep tissues and spectral multiplexing with fluorescent probes and OTs acting in the visible range. However, many NIR OTs suffer from background activation in darkness. Through shortening linkers, we engineered a novel NIR OT, iLight2, which exhibits a significantly reduced background activity in darkness, thereby increasing the light‐to‐dark activation contrast. The resultant optimal configuration of iLight2 components suggests a molecular mechanism of iLight2 action. Using a biliverdin reductase knock‐out mouse model, we show that iLight2 exhibits advanced performance in mouse primary cells and deep tissues <jats:italic>in vivo</jats:italic>. Efficient light‐controlled cell migration in wound healing cellular model demonstrates the possibility of using iLight2 in therapy and, overall, positions it as a valuable addition to the NIR OT toolkit for gene transcription applications.","PeriodicalId":20761,"journal":{"name":"Protein Science","volume":null,"pages":null},"PeriodicalIF":4.5000,"publicationDate":"2024-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Protein Science","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/pro.4993","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Optogenetic tools (OTs) operating in the far‐red and near‐infrared (NIR) region offer advantages for light‐controlling biological processes in deep tissues and spectral multiplexing with fluorescent probes and OTs acting in the visible range. However, many NIR OTs suffer from background activation in darkness. Through shortening linkers, we engineered a novel NIR OT, iLight2, which exhibits a significantly reduced background activity in darkness, thereby increasing the light‐to‐dark activation contrast. The resultant optimal configuration of iLight2 components suggests a molecular mechanism of iLight2 action. Using a biliverdin reductase knock‐out mouse model, we show that iLight2 exhibits advanced performance in mouse primary cells and deep tissues in vivo. Efficient light‐controlled cell migration in wound healing cellular model demonstrates the possibility of using iLight2 in therapy and, overall, positions it as a valuable addition to the NIR OT toolkit for gene transcription applications.
期刊介绍:
Protein Science, the flagship journal of The Protein Society, is a publication that focuses on advancing fundamental knowledge in the field of protein molecules. The journal welcomes original reports and review articles that contribute to our understanding of protein function, structure, folding, design, and evolution.
Additionally, Protein Science encourages papers that explore the applications of protein science in various areas such as therapeutics, protein-based biomaterials, bionanotechnology, synthetic biology, and bioelectronics.
The journal accepts manuscript submissions in any suitable format for review, with the requirement of converting the manuscript to journal-style format only upon acceptance for publication.
Protein Science is indexed and abstracted in numerous databases, including the Agricultural & Environmental Science Database (ProQuest), Biological Science Database (ProQuest), CAS: Chemical Abstracts Service (ACS), Embase (Elsevier), Health & Medical Collection (ProQuest), Health Research Premium Collection (ProQuest), Materials Science & Engineering Database (ProQuest), MEDLINE/PubMed (NLM), Natural Science Collection (ProQuest), and SciTech Premium Collection (ProQuest).