An-qi Guan , Fang-na Xiang , Zhen-hao Lin , Ping Liu , Zhi-jiang Jin , Jin-yuan Qian
{"title":"Experimental and modeling investigation on dynamic response of sticky control valves","authors":"An-qi Guan , Fang-na Xiang , Zhen-hao Lin , Ping Liu , Zhi-jiang Jin , Jin-yuan Qian","doi":"10.1016/j.conengprac.2024.105953","DOIUrl":null,"url":null,"abstract":"<div><p>The dynamic response of control valves directly affects the safe and efficient operation of industrial control loops. Valve stiction is a common and persistent issue that causes oscillations in control loops. The stiction behavior of valves has received widespread attention from researchers worldwide in the past two decades. The developed valve stiction models have been widely applied in the detection, quantification, and compensation research of sticky control valves. However, how to more accurately characterize stiction behavior still requires efforts. Most data-driven models do not consider the effects of dynamic response on the stiction behavior. In this paper, the inconsistency of the representative stiction models is discussed during the unidirectional motion of the valve stem, and potential improvements are revealed. An experimental device for valve stiction has been designed. This device can replicate valve stiction caused by tight packing, and measure valve position and friction through smart positioner and force sensor. The second-order dynamic system for the sticky valve is constructed by the physical model, and the response time of the valve is calculated and verified combined with the experiment. The effects of sampling interval on stiction behavior are discussed. On this basis, an improved valve stiction model considering the dynamic response of the valve is proposed, which supplements the situation of stiction during the unidirectional motion of the valve stem. The proposed model can be applied in control systems with fixed sampling intervals that involve sticky valves. It can also be extended to control systems with variable sampling intervals. This work contributes to evaluating the performance of control systems with sticky valves and providing reference value for the detection, quantification, and compensation of valve stiction.</p></div>","PeriodicalId":50615,"journal":{"name":"Control Engineering Practice","volume":null,"pages":null},"PeriodicalIF":5.4000,"publicationDate":"2024-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Control Engineering Practice","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0967066124001138","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
The dynamic response of control valves directly affects the safe and efficient operation of industrial control loops. Valve stiction is a common and persistent issue that causes oscillations in control loops. The stiction behavior of valves has received widespread attention from researchers worldwide in the past two decades. The developed valve stiction models have been widely applied in the detection, quantification, and compensation research of sticky control valves. However, how to more accurately characterize stiction behavior still requires efforts. Most data-driven models do not consider the effects of dynamic response on the stiction behavior. In this paper, the inconsistency of the representative stiction models is discussed during the unidirectional motion of the valve stem, and potential improvements are revealed. An experimental device for valve stiction has been designed. This device can replicate valve stiction caused by tight packing, and measure valve position and friction through smart positioner and force sensor. The second-order dynamic system for the sticky valve is constructed by the physical model, and the response time of the valve is calculated and verified combined with the experiment. The effects of sampling interval on stiction behavior are discussed. On this basis, an improved valve stiction model considering the dynamic response of the valve is proposed, which supplements the situation of stiction during the unidirectional motion of the valve stem. The proposed model can be applied in control systems with fixed sampling intervals that involve sticky valves. It can also be extended to control systems with variable sampling intervals. This work contributes to evaluating the performance of control systems with sticky valves and providing reference value for the detection, quantification, and compensation of valve stiction.
期刊介绍:
Control Engineering Practice strives to meet the needs of industrial practitioners and industrially related academics and researchers. It publishes papers which illustrate the direct application of control theory and its supporting tools in all possible areas of automation. As a result, the journal only contains papers which can be considered to have made significant contributions to the application of advanced control techniques. It is normally expected that practical results should be included, but where simulation only studies are available, it is necessary to demonstrate that the simulation model is representative of a genuine application. Strictly theoretical papers will find a more appropriate home in Control Engineering Practice''s sister publication, Automatica. It is also expected that papers are innovative with respect to the state of the art and are sufficiently detailed for a reader to be able to duplicate the main results of the paper (supplementary material, including datasets, tables, code and any relevant interactive material can be made available and downloaded from the website). The benefits of the presented methods must be made very clear and the new techniques must be compared and contrasted with results obtained using existing methods. Moreover, a thorough analysis of failures that may happen in the design process and implementation can also be part of the paper.
The scope of Control Engineering Practice matches the activities of IFAC.
Papers demonstrating the contribution of automation and control in improving the performance, quality, productivity, sustainability, resource and energy efficiency, and the manageability of systems and processes for the benefit of mankind and are relevant to industrial practitioners are most welcome.