Local CO2 reservoir layer promotes rapid and selective electrochemical CO2 reduction

IF 14.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Subhabrata Mukhopadhyay, Muhammad Saad Naeem, G. Shiva Shanker, Arnab Ghatak, Alagar R. Kottaichamy, Ran Shimoni, Liat Avram, Itamar Liberman, Rotem Balilty, Raya Ifraemov, Illya Rozenberg, Menny Shalom, Núria López, Idan Hod
{"title":"Local CO2 reservoir layer promotes rapid and selective electrochemical CO2 reduction","authors":"Subhabrata Mukhopadhyay, Muhammad Saad Naeem, G. Shiva Shanker, Arnab Ghatak, Alagar R. Kottaichamy, Ran Shimoni, Liat Avram, Itamar Liberman, Rotem Balilty, Raya Ifraemov, Illya Rozenberg, Menny Shalom, Núria López, Idan Hod","doi":"10.1038/s41467-024-47498-9","DOIUrl":null,"url":null,"abstract":"<p>Electrochemical CO<sub>2</sub> reduction reaction in aqueous electrolytes is a promising route to produce added-value chemicals and decrease carbon emissions. However, even in Gas-Diffusion Electrode devices, low aqueous CO<sub>2</sub> solubility limits catalysis rate and selectivity. Here, we demonstrate that when assembled over a heterogeneous electrocatalyst, a film of nitrile-modified Metal-Organic Framework (MOF) acts as a remarkable CO<sub>2</sub>-solvation layer that increases its local concentration by ~27-fold compared to bulk electrolyte, reaching 0.82 M. When mounted on a Bi catalyst in a Gas Diffusion Electrode, the MOF drastically improves CO<sub>2</sub>-to-HCOOH conversion, reaching above 90% selectivity and partial HCOOH currents of 166 mA/cm<sup>2</sup> (at −0.9 V vs RHE). The MOF also facilitates catalysis through stabilization of reaction intermediates, as identified by operando infrared spectroscopy and Density Functional Theory. Hence, the presented strategy provides new molecular means to enhance heterogeneous electrochemical CO<sub>2</sub> reduction reaction, leading it closer to the requirements for practical implementation.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"206 1","pages":""},"PeriodicalIF":14.7000,"publicationDate":"2024-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-024-47498-9","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Electrochemical CO2 reduction reaction in aqueous electrolytes is a promising route to produce added-value chemicals and decrease carbon emissions. However, even in Gas-Diffusion Electrode devices, low aqueous CO2 solubility limits catalysis rate and selectivity. Here, we demonstrate that when assembled over a heterogeneous electrocatalyst, a film of nitrile-modified Metal-Organic Framework (MOF) acts as a remarkable CO2-solvation layer that increases its local concentration by ~27-fold compared to bulk electrolyte, reaching 0.82 M. When mounted on a Bi catalyst in a Gas Diffusion Electrode, the MOF drastically improves CO2-to-HCOOH conversion, reaching above 90% selectivity and partial HCOOH currents of 166 mA/cm2 (at −0.9 V vs RHE). The MOF also facilitates catalysis through stabilization of reaction intermediates, as identified by operando infrared spectroscopy and Density Functional Theory. Hence, the presented strategy provides new molecular means to enhance heterogeneous electrochemical CO2 reduction reaction, leading it closer to the requirements for practical implementation.

Abstract Image

局部二氧化碳储层可促进快速、选择性的电化学二氧化碳还原
水基电解质中的电化学二氧化碳还原反应是生产高附加值化学品和减少碳排放的一条可行途径。然而,即使在气体扩散电极装置中,二氧化碳的低水溶性也限制了催化速率和选择性。在这里,我们证明了当装配在异相电催化剂上时,腈改性金属有机框架(MOF)薄膜可作为一个显著的二氧化碳溶解层,与大量电解质相比,其局部浓度增加了约 27 倍,达到 0.82 M。当在气体扩散电极中的 Bi 催化剂上安装 MOF 时,MOF 可显著提高 CO2 到 HCOOH 的转化率,选择性超过 90%,部分 HCOOH 电流达到 166 mA/cm2(在 -0.9 V 相对于 RHE 时)。MOF 还能通过稳定反应中间产物促进催化作用,这一点已通过操作红外光谱和密度泛函理论得到证实。因此,所提出的策略为增强异相电化学二氧化碳还原反应提供了新的分子手段,使其更接近实际应用的要求。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信