Can alpine species take the heat? Impacts of increased temperatures on early life stages

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Alexandra E. Seglias, Michelle DePrenger-Levin
{"title":"Can alpine species take the heat? Impacts of increased temperatures on early life stages","authors":"Alexandra E. Seglias, Michelle DePrenger-Levin","doi":"10.1017/s0960258524000096","DOIUrl":null,"url":null,"abstract":"<p>Alpine plant species are particularly vulnerable to climate change. Temperature fluctuations are projected to be most severe at high elevations. Even small shifts in temperature have major consequences on phenology, reproduction, and community composition. Early life stages are arguably the most important processes in the fitness of an individual plant and the dynamics and persistence of plant populations. These initial developmental stages are expected to be more vulnerable to changes in climate than adult life stages. To understand how early life stages of alpine plant species will respond to warming temperatures, seeds and seedlings of two species were exposed to three different temperature regimes. Temperatures were based on current and projected conditions under low and high emission scenarios. Two rare alpine species performed better under warmer temperatures at both the germination and seedling stages. The results show that early life stages of alpine plants may not be at high risk from warming temperatures; however, there are many other shifting climatic factors to consider, resulting from climate change beyond temperature alone.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1017/s0960258524000096","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

Alpine plant species are particularly vulnerable to climate change. Temperature fluctuations are projected to be most severe at high elevations. Even small shifts in temperature have major consequences on phenology, reproduction, and community composition. Early life stages are arguably the most important processes in the fitness of an individual plant and the dynamics and persistence of plant populations. These initial developmental stages are expected to be more vulnerable to changes in climate than adult life stages. To understand how early life stages of alpine plant species will respond to warming temperatures, seeds and seedlings of two species were exposed to three different temperature regimes. Temperatures were based on current and projected conditions under low and high emission scenarios. Two rare alpine species performed better under warmer temperatures at both the germination and seedling stages. The results show that early life stages of alpine plants may not be at high risk from warming temperatures; however, there are many other shifting climatic factors to consider, resulting from climate change beyond temperature alone.

高山物种能否承受高温?温度升高对早期生命阶段的影响
高山植物物种特别容易受到气候变化的影响。预计高海拔地区的温度波动将最为剧烈。即使是微小的温度变化也会对物候、繁殖和群落组成产生重大影响。可以说,生命早期阶段是植物个体健康状况以及植物种群动态和持久性的最重要过程。与成年生命阶段相比,这些最初的发育阶段预计更容易受到气候变化的影响。为了了解高山植物物种的早期生命阶段将如何应对气温变暖,我们将两个物种的种子和幼苗暴露在三种不同的温度条件下。温度是根据低排放和高排放情景下的当前和预测条件确定的。在温度较高的环境下,两种稀有的高山植物在发芽和幼苗阶段都表现较好。研究结果表明,高山植物的早期生命阶段可能不会因温度升高而面临高风险;然而,除了温度之外,气候变化还导致许多其他气候因素发生变化,需要加以考虑。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信