Dale A. Halbritter, Min B. Rayamajhi, Paul Madeira, Jorge G. Leidi, Telmah Telmadarrehei, Carey Minteer
{"title":"Isolation and reinoculation of a gall-inducing fungus in the invasive Brazilian peppertree (Schinus terebinthifolia) in Florida","authors":"Dale A. Halbritter, Min B. Rayamajhi, Paul Madeira, Jorge G. Leidi, Telmah Telmadarrehei, Carey Minteer","doi":"10.1017/inp.2024.3","DOIUrl":null,"url":null,"abstract":"Stem galls and witch’s broom–like growths are locally abundant on the highly invasive Brazilian peppertree (<jats:italic>Schinus terebinthifolia</jats:italic>) at field sites in southern Florida where a thrips biological control agent (<jats:italic>Pseudophilothrips ichini</jats:italic>) is being released to reduce the invasive potential of the plant. Galls have also been observed on potted plants in nursery stock grown to feed laboratory colonies of the agent. Herein, our objective was to isolate and identify the causal agent of the galls and assess its ability to induce galls in naive plants. We obtained stem galls from both field- and nursery-grown plants, aseptically isolated a fungus in acidic potato dextrose agar, and purified fungal colonies. Stems of potted naive saplings were wound-inoculated with purified hyphal fragments from the purified colonies, which readily induced galls like those observed in the field and nursery. Simultaneous molecular analysis of the fungal DNA obtained from the galls of field and nursery plants, experimentally induced galls, and fungal colony isolates identified this gall-inducing fungus as <jats:italic>Cophinforma</jats:italic> sp. We demonstrated that this <jats:italic>Cophinforma</jats:italic> sp. can infect <jats:italic>S. terebinthifolia</jats:italic> stems via mechanical wounds and induce visibly discernible stem galls in saplings within 3 mo. This will serve as a model for galled plant production for assessing the impacts of the gall-inducing fungus on <jats:italic>S. terebinthifolia</jats:italic>, with potential for further study to investigate interactions between the thrips and this naturalized fungus, which may synergistically and/or additively enhance <jats:italic>S. terebinthifolia</jats:italic> management efficacy.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1017/inp.2024.3","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Stem galls and witch’s broom–like growths are locally abundant on the highly invasive Brazilian peppertree (Schinus terebinthifolia) at field sites in southern Florida where a thrips biological control agent (Pseudophilothrips ichini) is being released to reduce the invasive potential of the plant. Galls have also been observed on potted plants in nursery stock grown to feed laboratory colonies of the agent. Herein, our objective was to isolate and identify the causal agent of the galls and assess its ability to induce galls in naive plants. We obtained stem galls from both field- and nursery-grown plants, aseptically isolated a fungus in acidic potato dextrose agar, and purified fungal colonies. Stems of potted naive saplings were wound-inoculated with purified hyphal fragments from the purified colonies, which readily induced galls like those observed in the field and nursery. Simultaneous molecular analysis of the fungal DNA obtained from the galls of field and nursery plants, experimentally induced galls, and fungal colony isolates identified this gall-inducing fungus as Cophinforma sp. We demonstrated that this Cophinforma sp. can infect S. terebinthifolia stems via mechanical wounds and induce visibly discernible stem galls in saplings within 3 mo. This will serve as a model for galled plant production for assessing the impacts of the gall-inducing fungus on S. terebinthifolia, with potential for further study to investigate interactions between the thrips and this naturalized fungus, which may synergistically and/or additively enhance S. terebinthifolia management efficacy.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.