PCG: A joint framework of graph collaborative filtering for bug triaging

IF 1.7 4区 计算机科学 Q3 COMPUTER SCIENCE, SOFTWARE ENGINEERING
Jie Dai, Qingshan Li, Shenglong Xie, Daizhen Li, Hua Chu
{"title":"PCG: A joint framework of graph collaborative filtering for bug triaging","authors":"Jie Dai,&nbsp;Qingshan Li,&nbsp;Shenglong Xie,&nbsp;Daizhen Li,&nbsp;Hua Chu","doi":"10.1002/smr.2673","DOIUrl":null,"url":null,"abstract":"<p>Bug triaging is a vital process in software maintenance, involving assigning bug reports to developers in the issue tracking system. Current studies predominantly treat automatic bug triaging as a classification task, categorizing bug reports using developers as labels. However, this approach deviates from the essence of triaging, which is establishing bug–developer correlations. These correlations should be explicitly leveraged, offering a more comprehensive and promising paradigm. Our bug triaging model utilizes graph collaborative filtering (GCF), a method known for handling correlations. However, GCF encounters two challenges in bug triaging: data sparsity in bug fixing records and semantic deficiency in exploiting input data. To address them, we propose PCG, an innovative framework that integrates prototype augmentation and contrastive learning with GCF. With bug triaging modeled as predicting links on the bipartite graph of bug–developer correlations, we introduce prototype clustering-based augmentation to mitigate data sparsity and devise a semantic contrastive learning task to overcome semantic deficiency. Extensive experiments against competitive baselines validate the superiority of PCG. This work may open new avenues for investigating correlations in bug triaging and related scenarios.</p>","PeriodicalId":48898,"journal":{"name":"Journal of Software-Evolution and Process","volume":"36 9","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2024-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Software-Evolution and Process","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/smr.2673","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

Bug triaging is a vital process in software maintenance, involving assigning bug reports to developers in the issue tracking system. Current studies predominantly treat automatic bug triaging as a classification task, categorizing bug reports using developers as labels. However, this approach deviates from the essence of triaging, which is establishing bug–developer correlations. These correlations should be explicitly leveraged, offering a more comprehensive and promising paradigm. Our bug triaging model utilizes graph collaborative filtering (GCF), a method known for handling correlations. However, GCF encounters two challenges in bug triaging: data sparsity in bug fixing records and semantic deficiency in exploiting input data. To address them, we propose PCG, an innovative framework that integrates prototype augmentation and contrastive learning with GCF. With bug triaging modeled as predicting links on the bipartite graph of bug–developer correlations, we introduce prototype clustering-based augmentation to mitigate data sparsity and devise a semantic contrastive learning task to overcome semantic deficiency. Extensive experiments against competitive baselines validate the superiority of PCG. This work may open new avenues for investigating correlations in bug triaging and related scenarios.

PCG:用于错误分流的图协同过滤联合框架
错误分流是软件维护的一个重要过程,涉及将错误报告分配给问题跟踪系统中的开发人员。目前的研究主要将错误自动分流作为一项分类任务,使用开发人员作为标签对错误报告进行分类。然而,这种方法偏离了分流的本质,即建立错误与开发人员之间的关联。应明确利用这些相关性,提供更全面、更有前景的范例。我们的错误分拣模型采用了图协同过滤(GCF),这是一种已知的处理相关性的方法。然而,GCF 在错误分流中遇到了两个挑战:错误修复记录中的数据稀缺性和利用输入数据时的语义缺陷。为了解决这两个问题,我们提出了 PCG,一个将原型增强和对比学习与 GCF 相结合的创新框架。通过将错误分流建模为预测错误-开发人员相关性双向图上的链接,我们引入了基于原型聚类的扩增来缓解数据稀疏性,并设计了语义对比学习任务来克服语义缺陷。针对竞争基线的广泛实验验证了 PCG 的优越性。这项工作可能会为研究错误分流和相关场景中的相关性开辟新的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Software-Evolution and Process
Journal of Software-Evolution and Process COMPUTER SCIENCE, SOFTWARE ENGINEERING-
自引率
10.00%
发文量
109
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信