Deep neural network uncertainty estimation for early oral cancer diagnosis

IF 2.7 3区 医学 Q1 DENTISTRY, ORAL SURGERY & MEDICINE
Huiping Lin, Hanshen Chen, Jun Lin
{"title":"Deep neural network uncertainty estimation for early oral cancer diagnosis","authors":"Huiping Lin,&nbsp;Hanshen Chen,&nbsp;Jun Lin","doi":"10.1111/jop.13536","DOIUrl":null,"url":null,"abstract":"<div>\n \n \n <section>\n \n <h3> Background</h3>\n \n <p>Early diagnosis in oral cancer is essential to reduce both morbidity and mortality. This study explores the use of uncertainty estimation in deep learning for early oral cancer diagnosis.</p>\n </section>\n \n <section>\n \n <h3> Methods</h3>\n \n <p>We develop a Bayesian deep learning model termed ‘Probabilistic HRNet’, which utilizes the ensemble MC dropout method on HRNet. Additionally, two oral lesion datasets with distinct distributions are created. We conduct a retrospective study to assess the predictive performance and uncertainty of Probabilistic HRNet across these datasets.</p>\n </section>\n \n <section>\n \n <h3> Results</h3>\n \n <p>Probabilistic HRNet performs optimally on the In-domain test set, achieving an F1 score of 95.3% and an AUC of 96.9% by excluding the top 30% high-uncertainty samples. For evaluations on the Domain-shift test set, the results show an F1 score of 64.9% and an AUC of 80.3%. After excluding 30% of the high-uncertainty samples, these metrics improve to an F1 score of 74.4% and an AUC of 85.6%.</p>\n </section>\n \n <section>\n \n <h3> Conclusion</h3>\n \n <p>Redirecting samples with high uncertainty to experts for subsequent diagnosis significantly decreases the rates of misdiagnosis, which highlights that uncertainty estimation is vital to ensure safe decision making for computer-aided early oral cancer diagnosis.</p>\n </section>\n </div>","PeriodicalId":16588,"journal":{"name":"Journal of Oral Pathology & Medicine","volume":"53 5","pages":"294-302"},"PeriodicalIF":2.7000,"publicationDate":"2024-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Oral Pathology & Medicine","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/jop.13536","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"DENTISTRY, ORAL SURGERY & MEDICINE","Score":null,"Total":0}
引用次数: 0

Abstract

Background

Early diagnosis in oral cancer is essential to reduce both morbidity and mortality. This study explores the use of uncertainty estimation in deep learning for early oral cancer diagnosis.

Methods

We develop a Bayesian deep learning model termed ‘Probabilistic HRNet’, which utilizes the ensemble MC dropout method on HRNet. Additionally, two oral lesion datasets with distinct distributions are created. We conduct a retrospective study to assess the predictive performance and uncertainty of Probabilistic HRNet across these datasets.

Results

Probabilistic HRNet performs optimally on the In-domain test set, achieving an F1 score of 95.3% and an AUC of 96.9% by excluding the top 30% high-uncertainty samples. For evaluations on the Domain-shift test set, the results show an F1 score of 64.9% and an AUC of 80.3%. After excluding 30% of the high-uncertainty samples, these metrics improve to an F1 score of 74.4% and an AUC of 85.6%.

Conclusion

Redirecting samples with high uncertainty to experts for subsequent diagnosis significantly decreases the rates of misdiagnosis, which highlights that uncertainty estimation is vital to ensure safe decision making for computer-aided early oral cancer diagnosis.

用于早期口腔癌诊断的深度神经网络不确定性估计
背景口腔癌的早期诊断对于降低发病率和死亡率至关重要。本研究探索了深度学习中不确定性估计在早期口腔癌诊断中的应用。方法我们开发了一种贝叶斯深度学习模型,称为 "概率 HRNet",它在 HRNet 上使用了集合 MC dropout 方法。此外,我们还创建了两个具有不同分布的口腔病变数据集。我们进行了一项回顾性研究,以评估概率 HRNet 在这些数据集上的预测性能和不确定性。结果概率 HRNet 在 In-domain 测试集上表现最佳,通过排除前 30% 的高不确定性样本,F1 分数达到 95.3%,AUC 达到 96.9%。对 Domain-shift 测试集的评估结果显示,F1 得分为 64.9%,AUC 为 80.3%。排除 30% 的高不确定性样本后,这些指标提高到了 74.4% 的 F1 分数和 85.6% 的 AUC。结论将高不确定性样本转给专家进行后续诊断可显著降低误诊率,这表明不确定性估计对于确保计算机辅助早期口腔癌诊断的安全决策至关重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.90
自引率
6.10%
发文量
121
审稿时长
4-8 weeks
期刊介绍: The aim of the Journal of Oral Pathology & Medicine is to publish manuscripts of high scientific quality representing original clinical, diagnostic or experimental work in oral pathology and oral medicine. Papers advancing the science or practice of these disciplines will be welcomed, especially those which bring new knowledge and observations from the application of techniques within the spheres of light and electron microscopy, tissue and organ culture, immunology, histochemistry and immunocytochemistry, microbiology, genetics and biochemistry.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信