{"title":"Electrochemical regeneration of adsorbents: An Electrochemist's perspective","authors":"Nael G. Yasri, Edward P.L. Roberts","doi":"10.1016/j.coelec.2024.101504","DOIUrl":null,"url":null,"abstract":"<div><p>Electrochemical regeneration of adsorbents has immense potential for water treatment applications, presenting new solutions to tackle the escalating challenges of sustainability. Conductive adsorbents, laden with adsorbate under an applied potential, can lead to regeneration due to electro-desorption and/or electrochemical reactions. Electrochemical regeneration offers many advantages, such as ambient operation, avoidance or minimization of chemicals, contaminant remediation, rapid and in-situ regeneration. These advantages offer the potential for more sustainable, lower cost, water and wastewater treatment processes. In this review, recent work in the field is reviewed, and important research challenges related to the electrochemical processes are identified. In particular, the complex interaction of the coupled electrical, electrochemical, and mass transport processes within a porous bed of adsorbent.</p></div>","PeriodicalId":11028,"journal":{"name":"Current Opinion in Electrochemistry","volume":"46 ","pages":"Article 101504"},"PeriodicalIF":7.9000,"publicationDate":"2024-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Opinion in Electrochemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2451910324000656","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Electrochemical regeneration of adsorbents has immense potential for water treatment applications, presenting new solutions to tackle the escalating challenges of sustainability. Conductive adsorbents, laden with adsorbate under an applied potential, can lead to regeneration due to electro-desorption and/or electrochemical reactions. Electrochemical regeneration offers many advantages, such as ambient operation, avoidance or minimization of chemicals, contaminant remediation, rapid and in-situ regeneration. These advantages offer the potential for more sustainable, lower cost, water and wastewater treatment processes. In this review, recent work in the field is reviewed, and important research challenges related to the electrochemical processes are identified. In particular, the complex interaction of the coupled electrical, electrochemical, and mass transport processes within a porous bed of adsorbent.
期刊介绍:
The development of the Current Opinion journals stemmed from the acknowledgment of the growing challenge for specialists to stay abreast of the expanding volume of information within their field. In Current Opinion in Electrochemistry, they help the reader by providing in a systematic manner:
1.The views of experts on current advances in electrochemistry in a clear and readable form.
2.Evaluations of the most interesting papers, annotated by experts, from the great wealth of original publications.
In the realm of electrochemistry, the subject is divided into 12 themed sections, with each section undergoing an annual review cycle:
• Bioelectrochemistry • Electrocatalysis • Electrochemical Materials and Engineering • Energy Storage: Batteries and Supercapacitors • Energy Transformation • Environmental Electrochemistry • Fundamental & Theoretical Electrochemistry • Innovative Methods in Electrochemistry • Organic & Molecular Electrochemistry • Physical & Nano-Electrochemistry • Sensors & Bio-sensors •