Human Placental Mesenchymal Stem Cells-Exosomes Alleviate Endothelial Barrier Dysfunction via Cytoskeletal Remodeling through hsa-miR-148a-3p/ROCK1 Pathway
{"title":"Human Placental Mesenchymal Stem Cells-Exosomes Alleviate Endothelial Barrier Dysfunction via Cytoskeletal Remodeling through hsa-miR-148a-3p/ROCK1 Pathway","authors":"Yuzhen Lv, Wenqin Yu, Ruiui Xuan, Yulu Yang, Xiaolan Xue, Xiaowei Ma","doi":"10.1155/2024/2172632","DOIUrl":null,"url":null,"abstract":"<i>Background</i>. Endothelial barrier disruption of human pulmonary vascular endothelial cells (HPVECs) is an important pathogenic factor for acute lung injury (ALI)/acute respiratory distress syndrome (ARDS). Mesenchymal stem cells-exosome (MSCs-Exo) represents an ideal carrier for cell-free therapy. The therapeutic implication and underlying mechanism of human placental MSCs-Exo (HPMSCs-Exo) in ALI/ARDS need to be further explored. <i>Materials and Methods</i>. HPMSCs-Exo was extracted from HPMSCs and characterized. Then, the therapeutic effects of exosomes were evaluated in ALI mice and HPVECs. RNA-sequencing was applied to reveal the miRNA profile of HPMSCs-Exo and differentially expressed genes (DEGs) in HPMSCs-Exo-pretreated HPVECs. The targets of miRNAs were predicted by bioinformatics methods and correlated to DEGs. Finally, the role of hsa-miR-148a-3p/ROCK1 pathway in HPVECs has been further discussed. <i>Results</i>. The results showed that HPMSCs-Exo could downregulate Rho-associated coiled-coil-containing protein kinase 1 (ROCK1), upregulate the expression of zonula occludens-1 (ZO-1) and F-actin, promote HPVECs migration and tube formation, reduce cytoskeletal disorders and cell permeability, and thus improve ALI/ARDS. RNA-sequencing revealed the DEGs were mainly enriched in cell junction, angiogenesis, inflammation, and energy metabolism. HPMSCs-Exo contains multiple miRNAs which are associated with cytoskeletal function; the expression abundance of hsa-miR-148a-3p is the highest. Bioinformatic analysis identified ROCK1 as a target of hsa-miR-148a-3p. The overexpression of hsa-miR-148a-3p in HPMSCs-Exo promoted the migration and tube formation of HPVECs and reduced ROCK1 expression. However, the overexpression of ROCK1 on HPVECs reduced the therapeutic effect of HPMSCs-Exo. <i>Conclusions</i>. HPMSCs-Exo represents a protective regimen against endothelial barrier disruption of HPVECs in ALI/ARDS, and the hsa-miR-148a-3p/ROCK1 pathway plays an important role in this therapeutics implication.","PeriodicalId":21962,"journal":{"name":"Stem Cells International","volume":"218 1","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2024-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stem Cells International","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1155/2024/2172632","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL & TISSUE ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
Background. Endothelial barrier disruption of human pulmonary vascular endothelial cells (HPVECs) is an important pathogenic factor for acute lung injury (ALI)/acute respiratory distress syndrome (ARDS). Mesenchymal stem cells-exosome (MSCs-Exo) represents an ideal carrier for cell-free therapy. The therapeutic implication and underlying mechanism of human placental MSCs-Exo (HPMSCs-Exo) in ALI/ARDS need to be further explored. Materials and Methods. HPMSCs-Exo was extracted from HPMSCs and characterized. Then, the therapeutic effects of exosomes were evaluated in ALI mice and HPVECs. RNA-sequencing was applied to reveal the miRNA profile of HPMSCs-Exo and differentially expressed genes (DEGs) in HPMSCs-Exo-pretreated HPVECs. The targets of miRNAs were predicted by bioinformatics methods and correlated to DEGs. Finally, the role of hsa-miR-148a-3p/ROCK1 pathway in HPVECs has been further discussed. Results. The results showed that HPMSCs-Exo could downregulate Rho-associated coiled-coil-containing protein kinase 1 (ROCK1), upregulate the expression of zonula occludens-1 (ZO-1) and F-actin, promote HPVECs migration and tube formation, reduce cytoskeletal disorders and cell permeability, and thus improve ALI/ARDS. RNA-sequencing revealed the DEGs were mainly enriched in cell junction, angiogenesis, inflammation, and energy metabolism. HPMSCs-Exo contains multiple miRNAs which are associated with cytoskeletal function; the expression abundance of hsa-miR-148a-3p is the highest. Bioinformatic analysis identified ROCK1 as a target of hsa-miR-148a-3p. The overexpression of hsa-miR-148a-3p in HPMSCs-Exo promoted the migration and tube formation of HPVECs and reduced ROCK1 expression. However, the overexpression of ROCK1 on HPVECs reduced the therapeutic effect of HPMSCs-Exo. Conclusions. HPMSCs-Exo represents a protective regimen against endothelial barrier disruption of HPVECs in ALI/ARDS, and the hsa-miR-148a-3p/ROCK1 pathway plays an important role in this therapeutics implication.
期刊介绍:
Stem Cells International is a peer-reviewed, Open Access journal that publishes original research articles, review articles, and clinical studies in all areas of stem cell biology and applications. The journal will consider basic, translational, and clinical research, including animal models and clinical trials.
Topics covered include, but are not limited to: embryonic stem cells; induced pluripotent stem cells; tissue-specific stem cells; stem cell differentiation; genetics and epigenetics; cancer stem cells; stem cell technologies; ethical, legal, and social issues.