Hemanshu Kaul, Rogers Mathew, Jeffrey A. Mudrock, Michael J. Pelsmajer
{"title":"Flexible list colorings: Maximizing the number of requests satisfied","authors":"Hemanshu Kaul, Rogers Mathew, Jeffrey A. Mudrock, Michael J. Pelsmajer","doi":"10.1002/jgt.23103","DOIUrl":null,"url":null,"abstract":"<p>Flexible list coloring was introduced by Dvořák, Norin, and Postle in 2019. Suppose <span></span><math>\n \n <mrow>\n <mn>0</mn>\n \n <mo>≤</mo>\n \n <mi>ϵ</mi>\n \n <mo>≤</mo>\n \n <mn>1</mn>\n </mrow></math>, <span></span><math>\n \n <mrow>\n <mi>G</mi>\n </mrow></math> is a graph, <span></span><math>\n \n <mrow>\n <mi>L</mi>\n </mrow></math> is a list assignment for <span></span><math>\n \n <mrow>\n <mi>G</mi>\n </mrow></math>, and <span></span><math>\n \n <mrow>\n <mi>r</mi>\n </mrow></math> is a function with nonempty domain <span></span><math>\n \n <mrow>\n <mi>D</mi>\n \n <mo>⊆</mo>\n \n <mi>V</mi>\n \n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow></math> such that <span></span><math>\n \n <mrow>\n <mi>r</mi>\n \n <mrow>\n <mo>(</mo>\n \n <mi>v</mi>\n \n <mo>)</mo>\n </mrow>\n \n <mo>∈</mo>\n \n <mi>L</mi>\n \n <mrow>\n <mo>(</mo>\n \n <mi>v</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow></math> for each <span></span><math>\n \n <mrow>\n <mi>v</mi>\n \n <mo>∈</mo>\n \n <mi>D</mi>\n </mrow></math> (<span></span><math>\n \n <mrow>\n <mi>r</mi>\n </mrow></math> is called a request of <span></span><math>\n \n <mrow>\n <mi>L</mi>\n </mrow></math>). The triple <span></span><math>\n \n <mrow>\n <mrow>\n <mo>(</mo>\n \n <mrow>\n <mi>G</mi>\n \n <mo>,</mo>\n \n <mi>L</mi>\n \n <mo>,</mo>\n \n <mi>r</mi>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n </mrow></math> is <span></span><math>\n \n <mrow>\n <mi>ϵ</mi>\n </mrow></math>-satisfiable if there exists a proper <span></span><math>\n \n <mrow>\n <mi>L</mi>\n </mrow></math>-coloring <span></span><math>\n \n <mrow>\n <mi>f</mi>\n </mrow></math> of <span></span><math>\n \n <mrow>\n <mi>G</mi>\n </mrow></math> such that <span></span><math>\n \n <mrow>\n <mi>f</mi>\n \n <mrow>\n <mo>(</mo>\n \n <mi>v</mi>\n \n <mo>)</mo>\n </mrow>\n \n <mo>=</mo>\n \n <mi>r</mi>\n \n <mrow>\n <mo>(</mo>\n \n <mi>v</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow></math> for at least <span></span><math>\n \n <mrow>\n <mi>ϵ</mi>\n \n <mo>∣</mo>\n \n <mi>D</mi>\n \n <mo>∣</mo>\n </mrow></math> vertices in <span></span><math>\n \n <mrow>\n <mi>D</mi>\n </mrow></math>. We say <span></span><math>\n \n <mrow>\n <mi>G</mi>\n </mrow></math> is <span></span><math>\n \n <mrow>\n <mrow>\n <mo>(</mo>\n \n <mrow>\n <mi>k</mi>\n \n <mo>,</mo>\n \n <mi>ϵ</mi>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n </mrow></math>-flexible if <span></span><math>\n \n <mrow>\n <mrow>\n <mo>(</mo>\n \n <mrow>\n <mi>G</mi>\n \n <mo>,</mo>\n \n <msup>\n <mi>L</mi>\n \n <mo>′</mo>\n </msup>\n \n <mo>,</mo>\n \n <msup>\n <mi>r</mi>\n \n <mo>′</mo>\n </msup>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n </mrow></math> is <span></span><math>\n \n <mrow>\n <mi>ϵ</mi>\n </mrow></math>-satisfiable whenever <span></span><math>\n \n <mrow>\n <msup>\n <mi>L</mi>\n \n <mo>′</mo>\n </msup>\n </mrow></math> is a <span></span><math>\n \n <mrow>\n <mi>k</mi>\n </mrow></math>-assignment for <span></span><math>\n \n <mrow>\n <mi>G</mi>\n </mrow></math> and <span></span><math>\n \n <mrow>\n <msup>\n <mi>r</mi>\n \n <mo>′</mo>\n </msup>\n </mrow></math> is a request of <span></span><math>\n \n <mrow>\n <msup>\n <mi>L</mi>\n \n <mo>′</mo>\n </msup>\n </mrow></math>. It was shown by Dvořák et al. that if <span></span><math>\n \n <mrow>\n <mi>d</mi>\n \n <mo>+</mo>\n \n <mn>1</mn>\n </mrow></math> is prime, <span></span><math>\n \n <mrow>\n <mi>G</mi>\n </mrow></math> is a <span></span><math>\n \n <mrow>\n <mi>d</mi>\n </mrow></math>-degenerate graph, and <span></span><math>\n \n <mrow>\n <mi>r</mi>\n </mrow></math> is a request for <span></span><math>\n \n <mrow>\n <mi>G</mi>\n </mrow></math> with domain of size 1, then <span></span><math>\n \n <mrow>\n <mrow>\n <mo>(</mo>\n \n <mrow>\n <mi>G</mi>\n \n <mo>,</mo>\n \n <mi>L</mi>\n \n <mo>,</mo>\n \n <mi>r</mi>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n </mrow></math> is 1-satisfiable whenever <span></span><math>\n \n <mrow>\n <mi>L</mi>\n </mrow></math> is a <span></span><math>\n \n <mrow>\n <mrow>\n <mo>(</mo>\n \n <mrow>\n <mi>d</mi>\n \n <mo>+</mo>\n \n <mn>1</mn>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n </mrow></math>-assignment. In this paper, we extend this result to all <span></span><math>\n \n <mrow>\n <mi>d</mi>\n </mrow></math> for bipartite <span></span><math>\n \n <mrow>\n <mi>d</mi>\n </mrow></math>-degenerate graphs.</p><p>The literature on flexible list coloring tends to focus on showing that for a fixed graph <span></span><math>\n \n <mrow>\n <mi>G</mi>\n </mrow></math> and <span></span><math>\n \n <mrow>\n <mi>k</mi>\n \n <mo>∈</mo>\n \n <mi>N</mi>\n </mrow></math> there exists an <span></span><math>\n \n <mrow>\n <mi>ϵ</mi>\n \n <mo>></mo>\n \n <mn>0</mn>\n </mrow></math> such that <span></span><math>\n \n <mrow>\n <mi>G</mi>\n </mrow></math> is <span></span><math>\n \n <mrow>\n <mrow>\n <mo>(</mo>\n \n <mrow>\n <mi>k</mi>\n \n <mo>,</mo>\n \n <mi>ϵ</mi>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n </mrow></math>-flexible, but it is natural to try to find the largest possible <span></span><math>\n \n <mrow>\n <mi>ϵ</mi>\n </mrow></math> for which <span></span><math>\n \n <mrow>\n <mi>G</mi>\n </mrow></math> is <span></span><math>\n \n <mrow>\n <mrow>\n <mo>(</mo>\n \n <mrow>\n <mi>k</mi>\n \n <mo>,</mo>\n \n <mi>ϵ</mi>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n </mrow></math>-flexible. In this vein, we improve a result of Dvořák et al., by showing <span></span><math>\n \n <mrow>\n <mi>d</mi>\n </mrow></math>-degenerate graphs are <span></span><math>\n \n <mrow>\n <mrow>\n <mo>(</mo>\n \n <mrow>\n <mi>d</mi>\n \n <mo>+</mo>\n \n <mn>2</mn>\n \n <mo>,</mo>\n \n <mn>1</mn>\n \n <mo>∕</mo>\n \n <msup>\n <mn>2</mn>\n \n <mrow>\n <mi>d</mi>\n \n <mo>+</mo>\n \n <mn>1</mn>\n </mrow>\n </msup>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n </mrow></math>-flexible. In pursuit of the largest <span></span><math>\n \n <mrow>\n <mi>ϵ</mi>\n </mrow></math> for which a graph is <span></span><math>\n \n <mrow>\n <mrow>\n <mo>(</mo>\n \n <mrow>\n <mi>k</mi>\n \n <mo>,</mo>\n \n <mi>ϵ</mi>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n </mrow></math>-flexible, we observe that a graph <span></span><math>\n \n <mrow>\n <mi>G</mi>\n </mrow></math> is not <span></span><math>\n \n <mrow>\n <mrow>\n <mo>(</mo>\n \n <mrow>\n <mi>k</mi>\n \n <mo>,</mo>\n \n <mi>ϵ</mi>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n </mrow></math>-flexible for any <span></span><math>\n \n <mrow>\n <mi>k</mi>\n </mrow></math> if and only if <span></span><math>\n \n <mrow>\n <mi>ϵ</mi>\n \n <mo>></mo>\n \n <mn>1</mn>\n \n <mo>∕</mo>\n \n <mi>ρ</mi>\n \n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow></math>, where <span></span><math>\n \n <mrow>\n <mi>ρ</mi>\n \n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow></math> is the Hall ratio of <span></span><math>\n \n <mrow>\n <mi>G</mi>\n </mrow></math>, and we initiate the study of the <i>list flexibility number of a graph</i> <span></span><math>\n \n <mrow>\n <mi>G</mi>\n </mrow></math>, which is the smallest <span></span><math>\n \n <mrow>\n <mi>k</mi>\n </mrow></math> such that <span></span><math>\n \n <mrow>\n <mi>G</mi>\n </mrow></math> is <span></span><math>\n \n <mrow>\n <mrow>\n <mo>(</mo>\n \n <mrow>\n <mi>k</mi>\n \n <mo>,</mo>\n \n <mn>1</mn>\n \n <mo>∕</mo>\n \n <mi>ρ</mi>\n \n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n </mrow></math>-flexible. We study relationships and connections between the list flexibility number, list chromatic number, list packing number, and degeneracy of a graph.</p>","PeriodicalId":16014,"journal":{"name":"Journal of Graph Theory","volume":"106 4","pages":"887-906"},"PeriodicalIF":0.9000,"publicationDate":"2024-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Graph Theory","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jgt.23103","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Flexible list coloring was introduced by Dvořák, Norin, and Postle in 2019. Suppose , is a graph, is a list assignment for , and is a function with nonempty domain such that for each ( is called a request of ). The triple is -satisfiable if there exists a proper -coloring of such that for at least vertices in . We say is -flexible if is -satisfiable whenever is a -assignment for and is a request of . It was shown by Dvořák et al. that if is prime, is a -degenerate graph, and is a request for with domain of size 1, then is 1-satisfiable whenever is a -assignment. In this paper, we extend this result to all for bipartite -degenerate graphs.
The literature on flexible list coloring tends to focus on showing that for a fixed graph and there exists an such that is -flexible, but it is natural to try to find the largest possible for which is -flexible. In this vein, we improve a result of Dvořák et al., by showing -degenerate graphs are -flexible. In pursuit of the largest for which a graph is -flexible, we observe that a graph is not -flexible for any if and only if , where is the Hall ratio of , and we initiate the study of the list flexibility number of a graph , which is the smallest such that is -flexible. We study relationships and connections between the list flexibility number, list chromatic number, list packing number, and degeneracy of a graph.
期刊介绍:
The Journal of Graph Theory is devoted to a variety of topics in graph theory, such as structural results about graphs, graph algorithms with theoretical emphasis, and discrete optimization on graphs. The scope of the journal also includes related areas in combinatorics and the interaction of graph theory with other mathematical sciences.
A subscription to the Journal of Graph Theory includes a subscription to the Journal of Combinatorial Designs .