The Exact Limits and Improved Decay Estimates for All Order Derivatives of the Global Weak Solutions of n-Dimensional Incompressible Navier-Stokes Equations

IF 0.9 4区 数学 Q3 MATHEMATICS, APPLIED
Ling-hai Zhang
{"title":"The Exact Limits and Improved Decay Estimates for All Order Derivatives of the Global Weak Solutions of n-Dimensional Incompressible Navier-Stokes Equations","authors":"Ling-hai Zhang","doi":"10.1007/s10255-024-1070-2","DOIUrl":null,"url":null,"abstract":"<p>We couple together existing ideas, existing results, special structure and novel ideas to accomplish the exact limits and improved decay estimates with sharp rates for all order derivatives of the global weak solutions of the Cauchy problem for an <i>n</i>-dimensional incompressible Navier-Stokes equations. We also use the global smooth solution of the corresponding heat equation to approximate the global weak solutions of the incompressible Navier-Stokes equations.</p>","PeriodicalId":6951,"journal":{"name":"Acta Mathematicae Applicatae Sinica, English Series","volume":"40 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2024-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Mathematicae Applicatae Sinica, English Series","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10255-024-1070-2","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

We couple together existing ideas, existing results, special structure and novel ideas to accomplish the exact limits and improved decay estimates with sharp rates for all order derivatives of the global weak solutions of the Cauchy problem for an n-dimensional incompressible Navier-Stokes equations. We also use the global smooth solution of the corresponding heat equation to approximate the global weak solutions of the incompressible Navier-Stokes equations.

n 维不可压缩纳维-斯托克斯方程全局弱解的所有阶衍生物的精确极限和改进衰减估计值
我们将现有思想、现有结果、特殊结构和新颖思想结合起来,完成了 n 维不可压缩纳维-斯托克斯方程的考希问题全局弱解的精确极限和改进的衰减估计,并具有尖锐的衰减率。我们还利用相应热方程的全局平稳解来近似不可压缩 Navier-Stokes 方程的全局弱解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
70
审稿时长
3.0 months
期刊介绍: Acta Mathematicae Applicatae Sinica (English Series) is a quarterly journal established by the Chinese Mathematical Society. The journal publishes high quality research papers from all branches of applied mathematics, and particularly welcomes those from partial differential equations, computational mathematics, applied probability, mathematical finance, statistics, dynamical systems, optimization and management science.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信