Moderate Deviations for the Parameter Estimation in the Fractional Ornstein-Uhlenbeck Process with $$H \in (0,{1 \over 2})$$

IF 0.9 4区 数学 Q3 MATHEMATICS, APPLIED
Hui Jiang, Qing-shan Yang
{"title":"Moderate Deviations for the Parameter Estimation in the Fractional Ornstein-Uhlenbeck Process with $$H \\in (0,{1 \\over 2})$$","authors":"Hui Jiang, Qing-shan Yang","doi":"10.1007/s10255-024-1083-x","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we study the asymptotic properties for estimators of two parameters in the drift function in the ergodic fractional Ornstein-Uhlenbeck process with Hurst index <span>\\(H \\in (0,{1 \\over 2})\\)</span>. The Cramér-type moderate deviations, as well as the moderation deviations with explicit rate function can be obtained. The main methods consist of the deviation inequalities and Cramér-type moderate deviations for multiple Wiener-Itô integrals, as well as the asymptotic analysis techniques.</p>","PeriodicalId":6951,"journal":{"name":"Acta Mathematicae Applicatae Sinica, English Series","volume":"34 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2024-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Mathematicae Applicatae Sinica, English Series","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10255-024-1083-x","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we study the asymptotic properties for estimators of two parameters in the drift function in the ergodic fractional Ornstein-Uhlenbeck process with Hurst index \(H \in (0,{1 \over 2})\). The Cramér-type moderate deviations, as well as the moderation deviations with explicit rate function can be obtained. The main methods consist of the deviation inequalities and Cramér-type moderate deviations for multiple Wiener-Itô integrals, as well as the asymptotic analysis techniques.

分式奥恩斯坦-乌伦贝克过程中参数估计的适度偏差与 $$H \ in (0,{1\over 2})$$
本文研究了具有赫斯特指数(H \in (0,{1 \over 2})\)的遍历分数奥恩斯坦-乌伦贝克过程中漂移函数中两个参数的估计值的渐近性质。可以得到克拉梅尔型温和偏差以及具有明确速率函数的温和偏差。主要方法包括多重维纳-伊托积分的偏差不等式和克拉梅尔型温和偏差,以及渐近分析技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
70
审稿时长
3.0 months
期刊介绍: Acta Mathematicae Applicatae Sinica (English Series) is a quarterly journal established by the Chinese Mathematical Society. The journal publishes high quality research papers from all branches of applied mathematics, and particularly welcomes those from partial differential equations, computational mathematics, applied probability, mathematical finance, statistics, dynamical systems, optimization and management science.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信