Analysis and Design of an Optimal Noise Estimation and Cancellation Filter in Wireline Communication

IF 2.4 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Mohammad Emami Meybodi;Hossein Shakiba;Ali Sheikholeslami
{"title":"Analysis and Design of an Optimal Noise Estimation and Cancellation Filter in Wireline Communication","authors":"Mohammad Emami Meybodi;Hossein Shakiba;Ali Sheikholeslami","doi":"10.1109/OJCAS.2024.3391698","DOIUrl":null,"url":null,"abstract":"This paper presents a comprehensive study of noise prediction and cancellation techniques in high-speed wireline communication systems. Feedforward and feedback architectures are compared, and it is found that while feedforward architecture can reduce total noise power, it fails to reduce symbol error rate (SER) due to unreliable noise estimation. To address this issue, an optimal noise estimation and cancellation filter (ONECF) is proposed, which directly minimizes SER. The paper provides mathematical analysis and experimental results of ONECF, demonstrating that ONECF is effective in reducing SER and improving SNR, and the degree of improvement is proportional to the channel loss. However, ONECF’s performance saturates at a certain level, which depends on the number of taps used. We conclude that feedforward noise cancelling filters are suitable for low to medium loss channels, whereas feedback ones are suitable for high loss channels.","PeriodicalId":93442,"journal":{"name":"IEEE open journal of circuits and systems","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2024-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10505903","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE open journal of circuits and systems","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10505903/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents a comprehensive study of noise prediction and cancellation techniques in high-speed wireline communication systems. Feedforward and feedback architectures are compared, and it is found that while feedforward architecture can reduce total noise power, it fails to reduce symbol error rate (SER) due to unreliable noise estimation. To address this issue, an optimal noise estimation and cancellation filter (ONECF) is proposed, which directly minimizes SER. The paper provides mathematical analysis and experimental results of ONECF, demonstrating that ONECF is effective in reducing SER and improving SNR, and the degree of improvement is proportional to the channel loss. However, ONECF’s performance saturates at a certain level, which depends on the number of taps used. We conclude that feedforward noise cancelling filters are suitable for low to medium loss channels, whereas feedback ones are suitable for high loss channels.
有线通信中最佳噪声估计和消除滤波器的分析与设计
本文全面研究了高速有线通信系统中的噪声预测和消除技术。比较了前馈和反馈架构,发现前馈架构虽然能降低总噪声功率,但由于噪声估计不可靠,无法降低符号错误率(SER)。为了解决这个问题,本文提出了一种最优噪声估计和消除滤波器(ONECF),它能直接将 SER 降到最低。论文提供了 ONECF 的数学分析和实验结果,证明 ONECF 能有效降低 SER 并提高 SNR,而且改善程度与信道损耗成正比。然而,ONECF 的性能会在一定程度上达到饱和,这取决于所使用的抽头数量。我们的结论是,前馈噪声消除滤波器适用于中低损耗信道,而反馈滤波器适用于高损耗信道。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
审稿时长
19 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信