Strong solution of modified anistropic 3D-Navier–Stokes equations

IF 1.1 4区 数学 Q1 MATHEMATICS
Maroua Ltifi, Jamel Benameur
{"title":"Strong solution of modified anistropic 3D-Navier–Stokes equations","authors":"Maroua Ltifi, Jamel Benameur","doi":"10.1007/s11587-024-00864-7","DOIUrl":null,"url":null,"abstract":"<p>This study delves into a comprehensive examination of modified three-dimensional, incompressible, anisotropic Navier–Stokes equations. The modification involves incorporating a power term in the nonlinear convection component, a particularly relevant adjustment in porous media scenarios, especially when the fluid adheres to the Darcy–Forchheimer law instead of the conventional Darcy law. Our main contributions include establishing global existence over time and demonstrating the uniqueness of solutions. Importantly, these achievements are realized without the need to assume smallness conditions on the initial data, but with the condition <span>\\(\\beta &gt;3\\)</span>. However, when <span>\\(\\beta =3\\)</span>, the problem is limited to the case <span>\\(0&lt;\\alpha &lt;4\\)</span> as the above inequality is unsolvable for these <span>\\(\\alpha \\)</span> values using our method. To address our statement, we will add a “slight disturbance” the function <span>\\(\\log (e+|u|^{2})\\)</span> to <span>\\(|u|^{2}u\\)</span>. The primary objective of our research is to affirm that the solution, denoted as <i>u</i> in this equation, exhibits continuity in <span>\\(L^{2}(\\mathbb {R}^{3})\\)</span>.\n</p>","PeriodicalId":21373,"journal":{"name":"Ricerche di Matematica","volume":"100 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2024-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ricerche di Matematica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11587-024-00864-7","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

This study delves into a comprehensive examination of modified three-dimensional, incompressible, anisotropic Navier–Stokes equations. The modification involves incorporating a power term in the nonlinear convection component, a particularly relevant adjustment in porous media scenarios, especially when the fluid adheres to the Darcy–Forchheimer law instead of the conventional Darcy law. Our main contributions include establishing global existence over time and demonstrating the uniqueness of solutions. Importantly, these achievements are realized without the need to assume smallness conditions on the initial data, but with the condition \(\beta >3\). However, when \(\beta =3\), the problem is limited to the case \(0<\alpha <4\) as the above inequality is unsolvable for these \(\alpha \) values using our method. To address our statement, we will add a “slight disturbance” the function \(\log (e+|u|^{2})\) to \(|u|^{2}u\). The primary objective of our research is to affirm that the solution, denoted as u in this equation, exhibits continuity in \(L^{2}(\mathbb {R}^{3})\).

修正的各向同性三维纳维尔-斯托克斯方程的强解法
本研究对修正的三维不可压缩各向异性纳维-斯托克斯方程进行了全面研究。修改涉及在非线性对流部分加入一个幂项,这在多孔介质情况下是一个特别相关的调整,尤其是当流体遵循达西-福克海默定律而非传统的达西定律时。我们的主要贡献包括建立了随时间变化的全局存在性,并证明了解的唯一性。重要的是,这些成就的实现无需假设初始数据的微小性条件,只需(\beta >3\)条件即可。然而,当\(\beta =3\)时,问题仅限于\(0<\alpha <4\)的情况,因为使用我们的方法,上述不等式对于这些\(\alpha \)值是无解的。为了解决这个问题,我们将在\(|u|^{2}\)中加入 "轻微干扰 "函数\(\log (e+|u|^{2})\)。我们研究的主要目的是确认解(在这个方程中表示为 u)在 \(L^{2}(\mathbb {R}^{3})\) 中表现出连续性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Ricerche di Matematica
Ricerche di Matematica Mathematics-Applied Mathematics
CiteScore
3.00
自引率
8.30%
发文量
61
期刊介绍: “Ricerche di Matematica” publishes high-quality research articles in any field of pure and applied mathematics. Articles must be original and written in English. Details about article submission can be found online.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信