Variants of Bernstein’s theorem for variational integrals with linear and nearly linear growth

IF 1.1 4区 数学 Q1 MATHEMATICS
Michael Bildhauer, Martin Fuchs
{"title":"Variants of Bernstein’s theorem for variational integrals with linear and nearly linear growth","authors":"Michael Bildhauer, Martin Fuchs","doi":"10.1007/s11587-024-00857-6","DOIUrl":null,"url":null,"abstract":"<p>Using a Caccioppoli-type inequality involving negative exponents for a directional weight we establish variants of Bernstein’s theorem for variational integrals with linear and nearly linear growth. We give some mild conditions for entire solutions of the equation </p><span>$$\\begin{aligned} {\\text {div}} \\Big [Df(\\nabla u)\\Big ] = 0 \\,, \\end{aligned}$$</span><p>under which solutions have to be affine functions. Here <i>f</i> is a smooth energy density satisfying <span>\\(D^2 f&gt;0\\)</span> together with a natural growth condition for <span>\\(D^2 f\\)</span>.</p>","PeriodicalId":21373,"journal":{"name":"Ricerche di Matematica","volume":"33 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2024-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ricerche di Matematica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11587-024-00857-6","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Using a Caccioppoli-type inequality involving negative exponents for a directional weight we establish variants of Bernstein’s theorem for variational integrals with linear and nearly linear growth. We give some mild conditions for entire solutions of the equation

$$\begin{aligned} {\text {div}} \Big [Df(\nabla u)\Big ] = 0 \,, \end{aligned}$$

under which solutions have to be affine functions. Here f is a smooth energy density satisfying \(D^2 f>0\) together with a natural growth condition for \(D^2 f\).

具有线性和近似线性增长的变分积分的伯恩斯坦定理变式
利用涉及方向权负指数的 Caccioppoli- 型不等式,我们为线性和近似线性增长的变分积分建立了伯恩斯坦定理的变体。我们给出了方程 $$\begin{aligned} {\text {div} 的全解的一些温和条件。}\Big [Df(\nabla u)\Big ] = 0 \,,\end{aligned}$$在此条件下,解必须是仿射函数。这里,f是满足\(D^2 f>0\) 以及\(D^2 f\) 自然增长条件的平滑能量密度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Ricerche di Matematica
Ricerche di Matematica Mathematics-Applied Mathematics
CiteScore
3.00
自引率
8.30%
发文量
61
期刊介绍: “Ricerche di Matematica” publishes high-quality research articles in any field of pure and applied mathematics. Articles must be original and written in English. Details about article submission can be found online.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信