Amaia Abanda, Amaia Arroyo, Fernando Boto, Miguel Esteras
{"title":"Combining physics-based and data-driven methods in metal stamping","authors":"Amaia Abanda, Amaia Arroyo, Fernando Boto, Miguel Esteras","doi":"10.1007/s10845-024-02374-7","DOIUrl":null,"url":null,"abstract":"<p>This work presents a methodology for combining physical modeling strategies (FEM), machine learning techniques, and evolutionary algorithms for a metal stamping process to ensure process quality during production. Firstly, a surrogate model or metamodel is proposed to approximate the behavior of the simulation model for different outputs in a fraction of time. Secondly, based on the surrogate model, multiple soft sensors that estimate different quality measures of the stamped part departing from the draw-ins are proposed, which enables their integration into the process. Lastly, evolutionary algorithms are used to estimate the latent blank characteristics and for the prescriptions of process parameters that maximize the quality of the stamped part. The obtained numerical results are promising, with relative errors around 2 2% in most cases and outperforming a naive method. This methodology aims to be a decision support system that moves towards zero defects in the stamping process from the process conception phase.</p>","PeriodicalId":16193,"journal":{"name":"Journal of Intelligent Manufacturing","volume":"40 1","pages":""},"PeriodicalIF":5.9000,"publicationDate":"2024-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Intelligent Manufacturing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s10845-024-02374-7","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
This work presents a methodology for combining physical modeling strategies (FEM), machine learning techniques, and evolutionary algorithms for a metal stamping process to ensure process quality during production. Firstly, a surrogate model or metamodel is proposed to approximate the behavior of the simulation model for different outputs in a fraction of time. Secondly, based on the surrogate model, multiple soft sensors that estimate different quality measures of the stamped part departing from the draw-ins are proposed, which enables their integration into the process. Lastly, evolutionary algorithms are used to estimate the latent blank characteristics and for the prescriptions of process parameters that maximize the quality of the stamped part. The obtained numerical results are promising, with relative errors around 2 2% in most cases and outperforming a naive method. This methodology aims to be a decision support system that moves towards zero defects in the stamping process from the process conception phase.
期刊介绍:
The Journal of Nonlinear Engineering aims to be a platform for sharing original research results in theoretical, experimental, practical, and applied nonlinear phenomena within engineering. It serves as a forum to exchange ideas and applications of nonlinear problems across various engineering disciplines. Articles are considered for publication if they explore nonlinearities in engineering systems, offering realistic mathematical modeling, utilizing nonlinearity for new designs, stabilizing systems, understanding system behavior through nonlinearity, optimizing systems based on nonlinear interactions, and developing algorithms to harness and leverage nonlinear elements.