Qiushi Feng, Zehua Dong, Rongfang Nie, Xiaosheng Wang
{"title":"Identifying Diffuse Glioma Subtypes Based on Pathway Enrichment Evaluation","authors":"Qiushi Feng, Zehua Dong, Rongfang Nie, Xiaosheng Wang","doi":"10.1007/s12539-024-00627-w","DOIUrl":null,"url":null,"abstract":"<p>Gliomas are highly heterogeneous in molecular, histology, and microenvironment. However, a classification of gliomas by integrating different tumor microenvironment (TME) components remains unexplored. Based on the enrichment scores of 17 pathways involved in immune, stromal, DNA repair, and nervous system signatures in diffuse gliomas, we performed consensus clustering to uncover novel subtypes of gliomas. Consistently in three glioma datasets (TCGA-glioma, CGGA325, and CGGA301), we identified three subtypes: Stromal-enriched (Str-G), Nerve-enriched (Ner-G), and mixed (Mix-G). Ner-G was charactered by low immune infiltration levels, stromal contents, tumor mutation burden, copy number alterations, DNA repair activity, cell proliferation, epithelial-mesenchymal transformation, stemness, intratumor heterogeneity, androgen receptor expression and <i>EGFR</i>, <i>PTEN</i>, <i>NF1</i> and <i>MUC16</i> mutation rates, while high enrichment of neurons and nervous system pathways, and high tumor purity, estrogen receptor expression, <i>IDH1</i> and <i>CIC</i> mutation rates, temozolomide response rate and overall and disease-free survival rates. In contrast, Str-G displayed contrastive characteristics to Ner-G. Our analysis indicates that the heterogeneity between glioma cells and neurons is lower than that between glioma cells and immune and stromal cells. Furthermore, the abundance of neurons is positively associated with clinical outcomes in gliomas, while the enrichment of immune and stromal cells has a negative association with them. Our classification method provides new insights into the tumor biology of gliomas, as well as clinical implications for the precise management of this disease.</p><h3 data-test=\"abstract-sub-heading\">Graphic Abstract</h3>\n","PeriodicalId":13670,"journal":{"name":"Interdisciplinary Sciences: Computational Life Sciences","volume":"78 1","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2024-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Interdisciplinary Sciences: Computational Life Sciences","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s12539-024-00627-w","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Gliomas are highly heterogeneous in molecular, histology, and microenvironment. However, a classification of gliomas by integrating different tumor microenvironment (TME) components remains unexplored. Based on the enrichment scores of 17 pathways involved in immune, stromal, DNA repair, and nervous system signatures in diffuse gliomas, we performed consensus clustering to uncover novel subtypes of gliomas. Consistently in three glioma datasets (TCGA-glioma, CGGA325, and CGGA301), we identified three subtypes: Stromal-enriched (Str-G), Nerve-enriched (Ner-G), and mixed (Mix-G). Ner-G was charactered by low immune infiltration levels, stromal contents, tumor mutation burden, copy number alterations, DNA repair activity, cell proliferation, epithelial-mesenchymal transformation, stemness, intratumor heterogeneity, androgen receptor expression and EGFR, PTEN, NF1 and MUC16 mutation rates, while high enrichment of neurons and nervous system pathways, and high tumor purity, estrogen receptor expression, IDH1 and CIC mutation rates, temozolomide response rate and overall and disease-free survival rates. In contrast, Str-G displayed contrastive characteristics to Ner-G. Our analysis indicates that the heterogeneity between glioma cells and neurons is lower than that between glioma cells and immune and stromal cells. Furthermore, the abundance of neurons is positively associated with clinical outcomes in gliomas, while the enrichment of immune and stromal cells has a negative association with them. Our classification method provides new insights into the tumor biology of gliomas, as well as clinical implications for the precise management of this disease.
期刊介绍:
Interdisciplinary Sciences--Computational Life Sciences aims to cover the most recent and outstanding developments in interdisciplinary areas of sciences, especially focusing on computational life sciences, an area that is enjoying rapid development at the forefront of scientific research and technology.
The journal publishes original papers of significant general interest covering recent research and developments. Articles will be published rapidly by taking full advantage of internet technology for online submission and peer-reviewing of manuscripts, and then by publishing OnlineFirstTM through SpringerLink even before the issue is built or sent to the printer.
The editorial board consists of many leading scientists with international reputation, among others, Luc Montagnier (UNESCO, France), Dennis Salahub (University of Calgary, Canada), Weitao Yang (Duke University, USA). Prof. Dongqing Wei at the Shanghai Jiatong University is appointed as the editor-in-chief; he made important contributions in bioinformatics and computational physics and is best known for his ground-breaking works on the theory of ferroelectric liquids. With the help from a team of associate editors and the editorial board, an international journal with sound reputation shall be created.