{"title":"Feasibility of an animal model for long-term mechanical circulatory support with Impella 5.5 implanted through carotid artery access in sheep","authors":"Shusuke Imaoka, Tomohiro Nishinaka, Toshihide Mizuno, Akihide Umeki, Takashi Murakami, Tomonori Tsukiya, Masashi Kawamura, Shigeru Miyagawa","doi":"10.1007/s10047-024-01444-0","DOIUrl":null,"url":null,"abstract":"<p>Impella is a mechanical circulatory support device of a catheter-based intravascular microaxial pump for left ventricular support and unloading. However, nonclinical studies assessing the effects of the extended duration of left ventricular unloading on cardiac recovery are lacking. An animal model using Impella implanted with a less invasive procedure to enable long-term support is required. This study aimed to evaluate the feasibility of an animal model for long-term support with Impella 5.5 implanted through carotid artery access in sheep.</p><p>Impella 5.5 was implanted in four sheep through the proximal region of the left carotid artery without a thoracotomy, and myocardial injuries were induced by coronary microembolization. Support by Impella 5.5 was maintained for 4 weeks, and the animals were observed. The position of Impella 5.5 and cardiac function was evaluated using cardiac computer tomography at 2 and 4 weeks after implantation.</p><p>All four animals completed the 4-week study without major complications. The discrepancy in the Impella 5.5 flow rate between the conscious and anesthetized states was observed depending on the device’s position. Animals in whom the inflow was above the left ventricular papillary muscle had a relatively high flow rate under the maximum performance level without a suction alarm during the conscious state. Pathological changes in the aortic valve were observed. Cardiac function under the minimum performance level was observed with no remarkable deterioration.</p><p>The animal model with myocardial injuries supported for 4 weeks by Impella 5.5 implanted through carotid artery access in sheep was feasible.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s10047-024-01444-0","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Impella is a mechanical circulatory support device of a catheter-based intravascular microaxial pump for left ventricular support and unloading. However, nonclinical studies assessing the effects of the extended duration of left ventricular unloading on cardiac recovery are lacking. An animal model using Impella implanted with a less invasive procedure to enable long-term support is required. This study aimed to evaluate the feasibility of an animal model for long-term support with Impella 5.5 implanted through carotid artery access in sheep.
Impella 5.5 was implanted in four sheep through the proximal region of the left carotid artery without a thoracotomy, and myocardial injuries were induced by coronary microembolization. Support by Impella 5.5 was maintained for 4 weeks, and the animals were observed. The position of Impella 5.5 and cardiac function was evaluated using cardiac computer tomography at 2 and 4 weeks after implantation.
All four animals completed the 4-week study without major complications. The discrepancy in the Impella 5.5 flow rate between the conscious and anesthetized states was observed depending on the device’s position. Animals in whom the inflow was above the left ventricular papillary muscle had a relatively high flow rate under the maximum performance level without a suction alarm during the conscious state. Pathological changes in the aortic valve were observed. Cardiac function under the minimum performance level was observed with no remarkable deterioration.
The animal model with myocardial injuries supported for 4 weeks by Impella 5.5 implanted through carotid artery access in sheep was feasible.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.