Single-cell senescence identification reveals senescence heterogeneity, trajectory, and modulators

IF 27.7 1区 生物学 Q1 CELL BIOLOGY
Wanyu Tao, Zhengqing Yu, Jing-Dong J. Han
{"title":"Single-cell senescence identification reveals senescence heterogeneity, trajectory, and modulators","authors":"Wanyu Tao, Zhengqing Yu, Jing-Dong J. Han","doi":"10.1016/j.cmet.2024.03.009","DOIUrl":null,"url":null,"abstract":"<p>Cellular senescence underlies many aging-related pathologies, but its heterogeneity poses challenges for studying and targeting senescent cells. We present here a machine learning program senescent cell identification (SenCID), which accurately identifies senescent cells in both bulk and single-cell transcriptome. Trained on 602 samples from 52 senescence transcriptome datasets spanning 30 cell types, SenCID identifies six major senescence identities (SIDs). Different SIDs exhibit different senescence baselines, stemness, gene functions, and responses to senolytics. SenCID enables the reconstruction of senescent trajectories under normal aging, chronic diseases, and COVID-19. Additionally, when applied to single-cell Perturb-seq data, SenCID helps reveal a hierarchy of senescence modulators. Overall, SenCID is an essential tool for precise single-cell analysis of cellular senescence, enabling targeted interventions against senescent cells.</p>","PeriodicalId":9840,"journal":{"name":"Cell metabolism","volume":"48 1","pages":""},"PeriodicalIF":27.7000,"publicationDate":"2024-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell metabolism","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.cmet.2024.03.009","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Cellular senescence underlies many aging-related pathologies, but its heterogeneity poses challenges for studying and targeting senescent cells. We present here a machine learning program senescent cell identification (SenCID), which accurately identifies senescent cells in both bulk and single-cell transcriptome. Trained on 602 samples from 52 senescence transcriptome datasets spanning 30 cell types, SenCID identifies six major senescence identities (SIDs). Different SIDs exhibit different senescence baselines, stemness, gene functions, and responses to senolytics. SenCID enables the reconstruction of senescent trajectories under normal aging, chronic diseases, and COVID-19. Additionally, when applied to single-cell Perturb-seq data, SenCID helps reveal a hierarchy of senescence modulators. Overall, SenCID is an essential tool for precise single-cell analysis of cellular senescence, enabling targeted interventions against senescent cells.

Abstract Image

单细胞衰老鉴定揭示衰老的异质性、轨迹和调节因子
细胞衰老是许多衰老相关病症的基础,但其异质性给研究和靶向衰老细胞带来了挑战。我们在此介绍一种机器学习程序衰老细胞识别(SenCID),它能准确识别大量和单细胞转录组中的衰老细胞。SenCID在跨越30种细胞类型的52个衰老转录组数据集的602个样本上进行了训练,识别出了六种主要的衰老特征(SID)。不同的 SIDs 表现出不同的衰老基线、干性、基因功能和对衰老剂的反应。SenCID 能够重建正常衰老、慢性疾病和 COVID-19 下的衰老轨迹。此外,当应用于单细胞 Perturb-seq 数据时,SenCID 还有助于揭示衰老调节剂的层次结构。总之,SenCID 是对细胞衰老进行精确单细胞分析的重要工具,能对衰老细胞进行有针对性的干预。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Cell metabolism
Cell metabolism 生物-内分泌学与代谢
CiteScore
48.60
自引率
1.40%
发文量
173
审稿时长
2.5 months
期刊介绍: Cell Metabolism is a top research journal established in 2005 that focuses on publishing original and impactful papers in the field of metabolic research.It covers a wide range of topics including diabetes, obesity, cardiovascular biology, aging and stress responses, circadian biology, and many others. Cell Metabolism aims to contribute to the advancement of metabolic research by providing a platform for the publication and dissemination of high-quality research and thought-provoking articles.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信