{"title":"The adjoint double layer potential on smooth surfaces in \\(\\mathbb {R}^3\\) and the Neumann problem","authors":"J. Thomas Beale, Michael Storm, Svetlana Tlupova","doi":"10.1007/s10444-024-10111-0","DOIUrl":null,"url":null,"abstract":"<div><p>We present a simple yet accurate method to compute the adjoint double layer potential, which is used to solve the Neumann boundary value problem for Laplace’s equation in three dimensions. An expansion in curvilinear coordinates leads us to modify the expression for the adjoint double layer so that the singularity is reduced when evaluating the integral on the surface. Then, to regularize the integral, we multiply the Green’s function by a radial function with length parameter <span>\\(\\delta \\)</span> chosen so that the product is smooth. We show that a natural regularization has error <span>\\(O(\\delta ^3)\\)</span>, and a simple modification improves the error to <span>\\(O(\\delta ^5)\\)</span>. The integral is evaluated numerically without the need of special coordinates. We use this treatment of the adjoint double layer to solve the classical integral equation for the interior Neumann problem, altered to account for the solvability condition, and evaluate the solution on the boundary. Choosing <span>\\(\\delta = ch^{4/5}\\)</span>, we find about <span>\\(O(h^4)\\)</span> convergence in our examples, where <i>h</i> is the spacing in a background grid.</p></div>","PeriodicalId":50869,"journal":{"name":"Advances in Computational Mathematics","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2024-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10444-024-10111-0.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Computational Mathematics","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10444-024-10111-0","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
We present a simple yet accurate method to compute the adjoint double layer potential, which is used to solve the Neumann boundary value problem for Laplace’s equation in three dimensions. An expansion in curvilinear coordinates leads us to modify the expression for the adjoint double layer so that the singularity is reduced when evaluating the integral on the surface. Then, to regularize the integral, we multiply the Green’s function by a radial function with length parameter \(\delta \) chosen so that the product is smooth. We show that a natural regularization has error \(O(\delta ^3)\), and a simple modification improves the error to \(O(\delta ^5)\). The integral is evaluated numerically without the need of special coordinates. We use this treatment of the adjoint double layer to solve the classical integral equation for the interior Neumann problem, altered to account for the solvability condition, and evaluate the solution on the boundary. Choosing \(\delta = ch^{4/5}\), we find about \(O(h^4)\) convergence in our examples, where h is the spacing in a background grid.
期刊介绍:
Advances in Computational Mathematics publishes high quality, accessible and original articles at the forefront of computational and applied mathematics, with a clear potential for impact across the sciences. The journal emphasizes three core areas: approximation theory and computational geometry; numerical analysis, modelling and simulation; imaging, signal processing and data analysis.
This journal welcomes papers that are accessible to a broad audience in the mathematical sciences and that show either an advance in computational methodology or a novel scientific application area, or both. Methods papers should rely on rigorous analysis and/or convincing numerical studies.