{"title":"Superallowed Nuclear Beta Decays and Precision Tests of the Standard Model","authors":"Mikhail Gorchtein, Chien-Yeah Seng","doi":"10.1146/annurev-nucl-102622-020726","DOIUrl":null,"url":null,"abstract":"For many decades, the main source of information on the top-left corner element of the Cabibbo–Kobayashi–Maskawa quark mixing matrix, <jats:italic>V</jats:italic> <jats:sub> <jats:italic>ud</jats:italic> </jats:sub>, was superallowed nuclear β decays with an impressive 0.01% precision. This precision, apart from experimental data, relies on theoretical calculations in which nuclear structure–dependent effects and uncertainties play a prime role. This review is dedicated to a thorough reassessment of all ingredients that enter the extraction of the value of <jats:italic>V</jats:italic> <jats:sub> <jats:italic>ud</jats:italic> </jats:sub> from experimental data. We try to keep balance between historical retrospect and new developments, many of which occurred in just the past 5 years. They have not yet been reviewed in a complete manner, not least because new results are forthcoming. This review aims to fill this gap and offers an in-depth yet accessible summary of all recent developments.","PeriodicalId":9,"journal":{"name":"ACS Catalysis ","volume":null,"pages":null},"PeriodicalIF":11.3000,"publicationDate":"2024-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Catalysis ","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1146/annurev-nucl-102622-020726","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
For many decades, the main source of information on the top-left corner element of the Cabibbo–Kobayashi–Maskawa quark mixing matrix, Vud, was superallowed nuclear β decays with an impressive 0.01% precision. This precision, apart from experimental data, relies on theoretical calculations in which nuclear structure–dependent effects and uncertainties play a prime role. This review is dedicated to a thorough reassessment of all ingredients that enter the extraction of the value of Vud from experimental data. We try to keep balance between historical retrospect and new developments, many of which occurred in just the past 5 years. They have not yet been reviewed in a complete manner, not least because new results are forthcoming. This review aims to fill this gap and offers an in-depth yet accessible summary of all recent developments.
几十年来,卡比布-小林-马斯卡瓦夸克混合矩阵左上角元素 V ud 的主要信息来源是超允许核 β 衰变,其精度达到了惊人的 0.01%。除了实验数据之外,这一精度还依赖于理论计算,其中核结构效应和不确定性发挥了重要作用。这篇综述致力于彻底重新评估从实验数据中提取 V ud 值的所有因素。我们试图在历史回顾与新发展之间保持平衡,其中许多新发展发生在过去的 5 年中。我们尚未对它们进行全面回顾,尤其是因为新的成果即将问世。本综述旨在填补这一空白,并对所有最新进展进行深入浅出的总结。
期刊介绍:
ACS Catalysis is an esteemed journal that publishes original research in the fields of heterogeneous catalysis, molecular catalysis, and biocatalysis. It offers broad coverage across diverse areas such as life sciences, organometallics and synthesis, photochemistry and electrochemistry, drug discovery and synthesis, materials science, environmental protection, polymer discovery and synthesis, and energy and fuels.
The scope of the journal is to showcase innovative work in various aspects of catalysis. This includes new reactions and novel synthetic approaches utilizing known catalysts, the discovery or modification of new catalysts, elucidation of catalytic mechanisms through cutting-edge investigations, practical enhancements of existing processes, as well as conceptual advances in the field. Contributions to ACS Catalysis can encompass both experimental and theoretical research focused on catalytic molecules, macromolecules, and materials that exhibit catalytic turnover.