{"title":"An exhaustive ADDIS principle for online FWER control","authors":"Lasse Fischer, Marta Bofill Roig, Werner Brannath","doi":"10.1002/bimj.202300237","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we consider online multiple testing with familywise error rate (FWER) control, where the probability of committing at least one type I error will remain under control while testing a possibly infinite sequence of hypotheses over time. Currently, adaptive-discard (ADDIS) procedures seem to be the most promising online procedures with FWER control in terms of power. Now, our main contribution is a uniform improvement of the ADDIS principle and thus of all ADDIS procedures. This means, the methods we propose reject as least as much hypotheses as ADDIS procedures and in some cases even more, while maintaining FWER control. In addition, we show that there is no other FWER controlling procedure that enlarges the event of rejecting any hypothesis. Finally, we apply the new principle to derive uniform improvements of the ADDIS-Spending and ADDIS-Graph.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/bimj.202300237","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/bimj.202300237","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, we consider online multiple testing with familywise error rate (FWER) control, where the probability of committing at least one type I error will remain under control while testing a possibly infinite sequence of hypotheses over time. Currently, adaptive-discard (ADDIS) procedures seem to be the most promising online procedures with FWER control in terms of power. Now, our main contribution is a uniform improvement of the ADDIS principle and thus of all ADDIS procedures. This means, the methods we propose reject as least as much hypotheses as ADDIS procedures and in some cases even more, while maintaining FWER control. In addition, we show that there is no other FWER controlling procedure that enlarges the event of rejecting any hypothesis. Finally, we apply the new principle to derive uniform improvements of the ADDIS-Spending and ADDIS-Graph.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.