{"title":"Modeling the growth probability of Clostridium Perfringens in cooked cured meat as affected by sodium chloride and sodium tripolyphosphate","authors":"Cheng-An Hwang, Lihan Huang, Shiowshuh Sheen","doi":"10.1016/j.mran.2024.100296","DOIUrl":null,"url":null,"abstract":"<div><p><em>Clostridium perfringens</em> has been implicated in food poisoning outbreaks linked to cooked cured meat. Although there are regulatory requirements to prevent its growth during meat production, additional control measures may reduce the <em>C. perfringens</em> risk. This study examined the effect of sodium chloride (salt) and sodium tripolyphosphate (STPP) on the growth probability of <em>C. perfringens</em> in a cooked cured meat. Ground beef (10 % fat) was mixed with 200 ppm sodium nitrite, 1–4 % salt, and 0–1.5 % STPP and inoculated with <em>C. perfringens</em> spores. Five grams of meat were vacuum-packaged in individual bags and heated at 70 °C for 30 min to activate the spores. Ten bags from each formulation were incubated at 46 °C for 48 h. The populations of <em>C. perfringens</em> before and after incubation were enumerated to determine the growth event of <em>C. perfringens</em> (an increase of >1.0 log CFU/g population after incubation) for each sample. The growth event ratios were fitted with a logistic model to develop a <em>C. perfringens</em> growth probability model as a function of the concentrations of salt and STPP. The combinations of 1 % salt and up to 1.5 % STPP were not able to prevent the growth of <em>C. perfringens</em>. For 2, 3, and 4 % salt, the growth/no growth boundaries were observed at approximately 1.5, 1.0, and 0.5 % STPP, respectively. The resulting model indicates that salt and STPP were significant factors (<em>p</em> < 0.05) affecting the growth probability of <em>C. perfringens</em>. This study identified the concentrations of salt and STPP that prevent the growth of <em>C. perfringens</em> in a cooked cured meat containing 200 ppm sodium nitrite. The model could be used for predicting the growth probability of <em>C. perfringens</em> as affected by salt and STPP concentrations and for selecting the additive concentrations that may reduce the growth probability of <em>C. perfringens</em> in cooked cured meat products.</p></div>","PeriodicalId":48593,"journal":{"name":"Microbial Risk Analysis","volume":"26 ","pages":"Article 100296"},"PeriodicalIF":3.0000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microbial Risk Analysis","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352352224000070","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Clostridium perfringens has been implicated in food poisoning outbreaks linked to cooked cured meat. Although there are regulatory requirements to prevent its growth during meat production, additional control measures may reduce the C. perfringens risk. This study examined the effect of sodium chloride (salt) and sodium tripolyphosphate (STPP) on the growth probability of C. perfringens in a cooked cured meat. Ground beef (10 % fat) was mixed with 200 ppm sodium nitrite, 1–4 % salt, and 0–1.5 % STPP and inoculated with C. perfringens spores. Five grams of meat were vacuum-packaged in individual bags and heated at 70 °C for 30 min to activate the spores. Ten bags from each formulation were incubated at 46 °C for 48 h. The populations of C. perfringens before and after incubation were enumerated to determine the growth event of C. perfringens (an increase of >1.0 log CFU/g population after incubation) for each sample. The growth event ratios were fitted with a logistic model to develop a C. perfringens growth probability model as a function of the concentrations of salt and STPP. The combinations of 1 % salt and up to 1.5 % STPP were not able to prevent the growth of C. perfringens. For 2, 3, and 4 % salt, the growth/no growth boundaries were observed at approximately 1.5, 1.0, and 0.5 % STPP, respectively. The resulting model indicates that salt and STPP were significant factors (p < 0.05) affecting the growth probability of C. perfringens. This study identified the concentrations of salt and STPP that prevent the growth of C. perfringens in a cooked cured meat containing 200 ppm sodium nitrite. The model could be used for predicting the growth probability of C. perfringens as affected by salt and STPP concentrations and for selecting the additive concentrations that may reduce the growth probability of C. perfringens in cooked cured meat products.
期刊介绍:
The journal Microbial Risk Analysis accepts articles dealing with the study of risk analysis applied to microbial hazards. Manuscripts should at least cover any of the components of risk assessment (risk characterization, exposure assessment, etc.), risk management and/or risk communication in any microbiology field (clinical, environmental, food, veterinary, etc.). This journal also accepts article dealing with predictive microbiology, quantitative microbial ecology, mathematical modeling, risk studies applied to microbial ecology, quantitative microbiology for epidemiological studies, statistical methods applied to microbiology, and laws and regulatory policies aimed at lessening the risk of microbial hazards. Work focusing on risk studies of viruses, parasites, microbial toxins, antimicrobial resistant organisms, genetically modified organisms (GMOs), and recombinant DNA products are also acceptable.