Total positivity of some polynomial matrices that enumerate labeled trees and forests II. Rooted labeled trees and partial functional digraphs

IF 1 3区 数学 Q3 MATHEMATICS, APPLIED
Xi Chen , Alan D. Sokal
{"title":"Total positivity of some polynomial matrices that enumerate labeled trees and forests II. Rooted labeled trees and partial functional digraphs","authors":"Xi Chen ,&nbsp;Alan D. Sokal","doi":"10.1016/j.aam.2024.102703","DOIUrl":null,"url":null,"abstract":"<div><p>We study three combinatorial models for the lower-triangular matrix with entries <span><math><msub><mrow><mi>t</mi></mrow><mrow><mi>n</mi><mo>,</mo><mi>k</mi></mrow></msub><mo>=</mo><mrow><mo>(</mo><mtable><mtr><mtd><mi>n</mi></mtd></mtr><mtr><mtd><mi>k</mi></mtd></mtr></mtable><mo>)</mo></mrow><msup><mrow><mi>n</mi></mrow><mrow><mi>n</mi><mo>−</mo><mi>k</mi></mrow></msup></math></span>: two involving rooted trees on the vertex set <span><math><mo>[</mo><mi>n</mi><mo>+</mo><mn>1</mn><mo>]</mo></math></span>, and one involving partial functional digraphs on the vertex set <span><math><mo>[</mo><mi>n</mi><mo>]</mo></math></span>. We show that this matrix is totally positive and that the sequence of its row-generating polynomials is coefficientwise Hankel-totally positive. We then generalize to polynomials <span><math><msub><mrow><mi>t</mi></mrow><mrow><mi>n</mi><mo>,</mo><mi>k</mi></mrow></msub><mo>(</mo><mi>y</mi><mo>,</mo><mi>z</mi><mo>)</mo></math></span> that count improper and proper edges, and further to polynomials <span><math><msub><mrow><mi>t</mi></mrow><mrow><mi>n</mi><mo>,</mo><mi>k</mi></mrow></msub><mo>(</mo><mi>y</mi><mo>,</mo><mi>ϕ</mi><mo>)</mo></math></span> in infinitely many indeterminates that give a weight <em>y</em> to each improper edge and a weight <span><math><mi>m</mi><mo>!</mo><mspace></mspace><msub><mrow><mi>ϕ</mi></mrow><mrow><mi>m</mi></mrow></msub></math></span> for each vertex with <em>m</em> proper children. We show that if the weight sequence <strong><em>ϕ</em></strong> is Toeplitz-totally positive, then the two foregoing total-positivity results continue to hold. Our proofs use production matrices and exponential Riordan arrays.</p></div>","PeriodicalId":50877,"journal":{"name":"Advances in Applied Mathematics","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2024-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0196885824000344/pdfft?md5=a2f9aaf88493d3b3f6ef49cef12fa30e&pid=1-s2.0-S0196885824000344-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0196885824000344","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

We study three combinatorial models for the lower-triangular matrix with entries tn,k=(nk)nnk: two involving rooted trees on the vertex set [n+1], and one involving partial functional digraphs on the vertex set [n]. We show that this matrix is totally positive and that the sequence of its row-generating polynomials is coefficientwise Hankel-totally positive. We then generalize to polynomials tn,k(y,z) that count improper and proper edges, and further to polynomials tn,k(y,ϕ) in infinitely many indeterminates that give a weight y to each improper edge and a weight m!ϕm for each vertex with m proper children. We show that if the weight sequence ϕ is Toeplitz-totally positive, then the two foregoing total-positivity results continue to hold. Our proofs use production matrices and exponential Riordan arrays.

枚举标注树和森林的一些多项式矩阵的全正性 II.有根标签树和部分函数图谱
我们研究了条目为 tn,k=(nk)nn-k 的下三角矩阵的三个组合模型:两个涉及顶点集 [n+1] 上的有根树,一个涉及顶点集 [n] 上的部分函数图。我们证明了这个矩阵是全正的,而且其行生成多项式的序列是系数汉克尔全正的。然后,我们将其推广到计算不适当边和适当边的多项式 tn,k(y,z),并进一步推广到无限多不定项的多项式 tn,k(y,j),即给每条不适当边一个权重 y,给每个有 m 个适当子顶点的顶点一个权重 m!jm。我们证明,如果权重序列 ϕ 是托普利兹全正的,那么上述两个全正结果继续成立。我们的证明使用了生产矩阵和指数瑞尔丹数组。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advances in Applied Mathematics
Advances in Applied Mathematics 数学-应用数学
CiteScore
2.00
自引率
9.10%
发文量
88
审稿时长
85 days
期刊介绍: Interdisciplinary in its coverage, Advances in Applied Mathematics is dedicated to the publication of original and survey articles on rigorous methods and results in applied mathematics. The journal features articles on discrete mathematics, discrete probability theory, theoretical statistics, mathematical biology and bioinformatics, applied commutative algebra and algebraic geometry, convexity theory, experimental mathematics, theoretical computer science, and other areas. Emphasizing papers that represent a substantial mathematical advance in their field, the journal is an excellent source of current information for mathematicians, computer scientists, applied mathematicians, physicists, statisticians, and biologists. Over the past ten years, Advances in Applied Mathematics has published research papers written by many of the foremost mathematicians of our time.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信