A transient shift in equatorial hydrology and vegetation during the Eocene Thermal Maximum 2

IF 8.5 1区 地球科学 Q1 GEOSCIENCES, MULTIDISCIPLINARY
Gaurav Srivastava , Harshita Bhatia , Poonam Verma , Yogesh P. Singh , Shailesh Agrawal , Torsten Utescher , R.C. Mehrotra
{"title":"A transient shift in equatorial hydrology and vegetation during the Eocene Thermal Maximum 2","authors":"Gaurav Srivastava ,&nbsp;Harshita Bhatia ,&nbsp;Poonam Verma ,&nbsp;Yogesh P. Singh ,&nbsp;Shailesh Agrawal ,&nbsp;Torsten Utescher ,&nbsp;R.C. Mehrotra","doi":"10.1016/j.gsf.2024.101838","DOIUrl":null,"url":null,"abstract":"<div><p>The equatorial evergreen forests nourish the world's biodiversity hotspots and are considered the lungs of the Earth. However, their future survival is uncertain, due to anthropogenically increased carbon emissions and changes in the hydrological cycle. Understanding the changes in the hydrological cycle in the equatorial region due to an increase in carbon emission is of prime importance. The early Paleogene hyperthermal events are potential analogs to understand the consequences of high carbon emission on the hydrological cycle. In this communication, we quantify the terrestrial seasonal climate using the plant proxy and infer that during the Eocene Thermal Maximum 2 when atmospheric carbon dioxide concentration was &gt; 1000 ppmv near the palaeo-equator (∼0.6°N), the rainfall decreased significantly, leading to the expansion of deciduous forests. This study raises important questions about the future survival of equatorial rainforests and biodiversity hotspots under increased carbon emissions.</p></div>","PeriodicalId":12711,"journal":{"name":"Geoscience frontiers","volume":"15 5","pages":"Article 101838"},"PeriodicalIF":8.5000,"publicationDate":"2024-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1674987124000628/pdfft?md5=b4a69cb65c8f4452272f5cc0402aac61&pid=1-s2.0-S1674987124000628-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geoscience frontiers","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1674987124000628","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The equatorial evergreen forests nourish the world's biodiversity hotspots and are considered the lungs of the Earth. However, their future survival is uncertain, due to anthropogenically increased carbon emissions and changes in the hydrological cycle. Understanding the changes in the hydrological cycle in the equatorial region due to an increase in carbon emission is of prime importance. The early Paleogene hyperthermal events are potential analogs to understand the consequences of high carbon emission on the hydrological cycle. In this communication, we quantify the terrestrial seasonal climate using the plant proxy and infer that during the Eocene Thermal Maximum 2 when atmospheric carbon dioxide concentration was > 1000 ppmv near the palaeo-equator (∼0.6°N), the rainfall decreased significantly, leading to the expansion of deciduous forests. This study raises important questions about the future survival of equatorial rainforests and biodiversity hotspots under increased carbon emissions.

Abstract Image

始新世最热时期赤道水文和植被的瞬时变化 2
赤道常绿森林滋养着世界生物多样性热点地区,被视为地球之肺。然而,由于人为的碳排放增加和水文循环的变化,它们未来的生存并不确定。了解赤道地区水文循环因碳排放量增加而发生的变化至关重要。古新世早期的高热事件是了解高碳排放对水文循环影响的潜在类似物。在这篇通讯中,我们利用植物代用指标对陆地季节性气候进行了量化,并推断在始新世热极值2期间,当大气二氧化碳浓度为1000 ppmv时,古赤道附近(北纬0.6°∼)的降雨量显著减少,导致落叶林面积扩大。这项研究提出了在碳排放增加的情况下赤道雨林和生物多样性热点地区未来生存的重要问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Geoscience frontiers
Geoscience frontiers Earth and Planetary Sciences-General Earth and Planetary Sciences
CiteScore
17.80
自引率
3.40%
发文量
147
审稿时长
35 days
期刊介绍: Geoscience Frontiers (GSF) is the Journal of China University of Geosciences (Beijing) and Peking University. It publishes peer-reviewed research articles and reviews in interdisciplinary fields of Earth and Planetary Sciences. GSF covers various research areas including petrology and geochemistry, lithospheric architecture and mantle dynamics, global tectonics, economic geology and fuel exploration, geophysics, stratigraphy and paleontology, environmental and engineering geology, astrogeology, and the nexus of resources-energy-emissions-climate under Sustainable Development Goals. The journal aims to bridge innovative, provocative, and challenging concepts and models in these fields, providing insights on correlations and evolution.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信