{"title":"Suppression of essential oil biosynthesis in sweet basil cotyledons under hypergravity conditions","authors":"Yu Watanabe , Hana Yamamoto , Ikumi Shimizu , Hiroki Hongo , Arisa Noguchi , Nobuharu Fujii , Takayuki Hoson , Kazuyuki Wakabayashi , Kouichi Soga","doi":"10.1016/j.lssr.2024.04.002","DOIUrl":null,"url":null,"abstract":"<div><p>The mechanism through which gravity influences the biosynthesis of essential oils in herbs is an important issue for plant and space biology. Sweet basil (<em>Ocimum basilicum</em> L.) seedlings were cultivated under centrifugal hypergravity conditions at 100 <em>g</em> in the light, and the growth of cotyledons, development of glandular hairs, and biosynthesis of essential oils were analyzed. The area and fresh weight of the cotyledons increased by similar amounts irrespective of the gravitational conditions. On the abaxial surface of the cotyledons, glandular hairs, where essential oils are synthesized and stored, developed from those with single-cell heads to those with four-cell heads; however, hypergravity did not affect this development. The main components, methyl eugenol and 1,8-cineole, in the essential oils of cotyledons were lower in cotyledons grown under hypergravity conditions. The gene expression of enzymes in the phenylpropanoid pathway involved in the synthesis of methyl eugenol, such as phenylalanine ammonia lyase (PAL) and eugenol <em>O</em>-methyltransferase (EOMT), was downregulated by hypergravity. Hypergravity also decreased the gene expression of enzymes in the 2C-methyl-d-erythritol 4-phosphate (MEP) pathway involved in the synthesis of 1,8-cineole, such as 1-deoxy-d-xylulose-5-phosphate synthase (DXS) and 1,8-cineole synthase (CINS). These results indicate that hypergravity without affecting the development of glandular hairs, decreases the expression of genes related to the biosynthesis of methyl eugenol and 1,8-cineole, which may cause a decrease in the amounts of both essential oils in sweet basil cotyledons.</p></div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214552424000373","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
The mechanism through which gravity influences the biosynthesis of essential oils in herbs is an important issue for plant and space biology. Sweet basil (Ocimum basilicum L.) seedlings were cultivated under centrifugal hypergravity conditions at 100 g in the light, and the growth of cotyledons, development of glandular hairs, and biosynthesis of essential oils were analyzed. The area and fresh weight of the cotyledons increased by similar amounts irrespective of the gravitational conditions. On the abaxial surface of the cotyledons, glandular hairs, where essential oils are synthesized and stored, developed from those with single-cell heads to those with four-cell heads; however, hypergravity did not affect this development. The main components, methyl eugenol and 1,8-cineole, in the essential oils of cotyledons were lower in cotyledons grown under hypergravity conditions. The gene expression of enzymes in the phenylpropanoid pathway involved in the synthesis of methyl eugenol, such as phenylalanine ammonia lyase (PAL) and eugenol O-methyltransferase (EOMT), was downregulated by hypergravity. Hypergravity also decreased the gene expression of enzymes in the 2C-methyl-d-erythritol 4-phosphate (MEP) pathway involved in the synthesis of 1,8-cineole, such as 1-deoxy-d-xylulose-5-phosphate synthase (DXS) and 1,8-cineole synthase (CINS). These results indicate that hypergravity without affecting the development of glandular hairs, decreases the expression of genes related to the biosynthesis of methyl eugenol and 1,8-cineole, which may cause a decrease in the amounts of both essential oils in sweet basil cotyledons.