Juntong Liu , Yinshuang Ai , Ying Chen , Jianshe Lei
{"title":"The crust-mantle velocity structure beneath the Wudalianchi-Erkeshan-Keluo volcanic belt by joint inversion of receiver functions and ambient noise","authors":"Juntong Liu , Yinshuang Ai , Ying Chen , Jianshe Lei","doi":"10.1016/j.pepi.2024.107194","DOIUrl":null,"url":null,"abstract":"<div><p>The Wudalianchi-Erkeshan-Keluo (WEK) volcanic belt is a significant component of intraplate volcanism in Northeast China and is composed of the Wudalianchi, Erkeshan, and Keluo volcanic clusters. Using joint inversion of receiver functions and ambient noise, we construct a high-resolution 3-D S-wave velocity model of the WEK volcanic belt and its adjacent region, taking advantage of a deployed dense seismic array around this volcanic belt. There is a prominent low-velocity anomaly at 8–15 km depth beneath the Wudalianchi volcanic cluster, suggesting the presence of a crustal magma chamber. Low-velocity anomalies are also observed at 30–35 km depth beneath the Erkeshan volcanic cluster and 30–40 km depth beneath the Keluo volcanic cluster, resulting in discontinuous velocity structures at the Moho discontinuity. We further find a distinct low-velocity anomaly in the uppermost mantle beneath the WEK volcanic belt. Combined with previous geophysical and geochemistry studies, we propose a magma system scenario for the WEK volcanic belt. The upwelling molten material from the asthenosphere accumulated in the uppermost mantle and the magma chamber was formed, which provided the same uppermost mantle magma sources for the WEK volcanic belt.</p></div>","PeriodicalId":54614,"journal":{"name":"Physics of the Earth and Planetary Interiors","volume":"351 ","pages":"Article 107194"},"PeriodicalIF":2.4000,"publicationDate":"2024-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics of the Earth and Planetary Interiors","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0031920124000529","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
The Wudalianchi-Erkeshan-Keluo (WEK) volcanic belt is a significant component of intraplate volcanism in Northeast China and is composed of the Wudalianchi, Erkeshan, and Keluo volcanic clusters. Using joint inversion of receiver functions and ambient noise, we construct a high-resolution 3-D S-wave velocity model of the WEK volcanic belt and its adjacent region, taking advantage of a deployed dense seismic array around this volcanic belt. There is a prominent low-velocity anomaly at 8–15 km depth beneath the Wudalianchi volcanic cluster, suggesting the presence of a crustal magma chamber. Low-velocity anomalies are also observed at 30–35 km depth beneath the Erkeshan volcanic cluster and 30–40 km depth beneath the Keluo volcanic cluster, resulting in discontinuous velocity structures at the Moho discontinuity. We further find a distinct low-velocity anomaly in the uppermost mantle beneath the WEK volcanic belt. Combined with previous geophysical and geochemistry studies, we propose a magma system scenario for the WEK volcanic belt. The upwelling molten material from the asthenosphere accumulated in the uppermost mantle and the magma chamber was formed, which provided the same uppermost mantle magma sources for the WEK volcanic belt.
期刊介绍:
Launched in 1968 to fill the need for an international journal in the field of planetary physics, geodesy and geophysics, Physics of the Earth and Planetary Interiors has now grown to become important reading matter for all geophysicists. It is the only journal to be entirely devoted to the physical and chemical processes of planetary interiors.
Original research papers, review articles, short communications and book reviews are all published on a regular basis; and from time to time special issues of the journal are devoted to the publication of the proceedings of symposia and congresses which the editors feel will be of particular interest to the reader.