Clinicopathological Significance and Prognostic Role of High Mobility Group Box 1 (HMGB1), Toll-Like Receptor (TLR) 2 and TLR4 in Breast Cancer

IF 1.6 4区 生物学 Q4 CELL BIOLOGY
Reina Taguchi, Mio Yamaguchi-Tanaka, Kiyoshi Takagi, Ai Sato, Yasuhiro Miki, Minoru Miyashita, Takashi Suzuki
{"title":"Clinicopathological Significance and Prognostic Role of High Mobility Group Box 1 (HMGB1), Toll-Like Receptor (TLR) 2 and TLR4 in Breast Cancer","authors":"Reina Taguchi, Mio Yamaguchi-Tanaka, Kiyoshi Takagi, Ai Sato, Yasuhiro Miki, Minoru Miyashita, Takashi Suzuki","doi":"10.1267/ahc.24-00006","DOIUrl":null,"url":null,"abstract":"</p><p>High-mobility group box 1 (HMGB1) functions as damage-associated molecular pattern (DAMPs), released into extracellular space during cellular stress. Extracellular HMGB1 act as signal molecules through Toll-like receptor (TLR) 2 or TLR4, exerting diverse functions in both normal cells and malignant cells including breast cancer. However, their comprehensive examination in breast cancer tissues is lacking. Thus, we immunolocalized them in 112 breast cancer tissues, correlating their immunoreactivity with clinicopathological parameters and clinical outcomes to clarify their significance in breast cancer. We demonstrated that nuclear HMGB1 immunoreactivity was correlated with tumor progression and longer disease-free survival. In contrast, TLR2 immunoreactivity was correlated with increased cell proliferation and shorter disease-free survival, dependent on cytoplasmic HMGB1 immunoreactivity. Additionally, TLR4 immunoreactivity correlated with chemoresistance, regardless of cytoplasmic HMGB1 immunoreactivity. It was therefore considered that TLR2 collaboratively contributed to breast cancer progression with HMGB1-DAMPs to become a worse prognostic factor. Meanwhile, TLR4 served as a worse prognostic factor associated with chemoresistance, irrespective of HMGB1.</p>\n<p></p>","PeriodicalId":6888,"journal":{"name":"Acta Histochemica Et Cytochemica","volume":"32 1","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2024-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Histochemica Et Cytochemica","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1267/ahc.24-00006","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

High-mobility group box 1 (HMGB1) functions as damage-associated molecular pattern (DAMPs), released into extracellular space during cellular stress. Extracellular HMGB1 act as signal molecules through Toll-like receptor (TLR) 2 or TLR4, exerting diverse functions in both normal cells and malignant cells including breast cancer. However, their comprehensive examination in breast cancer tissues is lacking. Thus, we immunolocalized them in 112 breast cancer tissues, correlating their immunoreactivity with clinicopathological parameters and clinical outcomes to clarify their significance in breast cancer. We demonstrated that nuclear HMGB1 immunoreactivity was correlated with tumor progression and longer disease-free survival. In contrast, TLR2 immunoreactivity was correlated with increased cell proliferation and shorter disease-free survival, dependent on cytoplasmic HMGB1 immunoreactivity. Additionally, TLR4 immunoreactivity correlated with chemoresistance, regardless of cytoplasmic HMGB1 immunoreactivity. It was therefore considered that TLR2 collaboratively contributed to breast cancer progression with HMGB1-DAMPs to become a worse prognostic factor. Meanwhile, TLR4 served as a worse prognostic factor associated with chemoresistance, irrespective of HMGB1.

乳腺癌中高迁移率组方框 1 (HMGB1)、Toll-Like 受体 (TLR) 2 和 TLR4 的临床病理学意义和预后作用
高迁移率基团框 1(HMGB1)作为损伤相关分子模式(DAMPs),在细胞应激时释放到细胞外空间。细胞外 HMGB1 通过 Toll 样受体(TLR)2 或 TLR4 充当信号分子,在正常细胞和恶性细胞(包括乳腺癌)中发挥多种功能。然而,目前还缺乏对它们在乳腺癌组织中作用的全面研究。因此,我们在 112 例乳腺癌组织中对它们进行了免疫定位,并将它们的免疫反应与临床病理参数和临床结果相关联,以明确它们在乳腺癌中的意义。我们发现,核 HMGB1 免疫反应与肿瘤进展和较长的无病生存期相关。相反,TLR2 免疫反应与细胞增殖增加和无病生存期缩短相关,这取决于细胞质 HMGB1 免疫反应。此外,TLR4 免疫反应与化疗耐药性相关,与细胞质 HMGB1 免疫反应无关。因此,人们认为 TLR2 与 HMGB1-DAMPs 共同导致了乳腺癌的进展,成为一个更坏的预后因素。同时,TLR4是与化疗耐药性相关的较差预后因素,与HMGB1无关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Acta Histochemica Et Cytochemica
Acta Histochemica Et Cytochemica 生物-细胞生物学
CiteScore
3.50
自引率
8.30%
发文量
17
审稿时长
>12 weeks
期刊介绍: Acta Histochemica et Cytochemica is the official online journal of the Japan Society of Histochemistry and Cytochemistry. It is intended primarily for rapid publication of concise, original articles in the fields of histochemistry and cytochemistry. Manuscripts oriented towards methodological subjects that contain significant technical advances in these fields are also welcome. Manuscripts in English are accepted from investigators in any country, whether or not they are members of the Japan Society of Histochemistry and Cytochemistry. Manuscripts should be original work that has not been previously published and is not being considered for publication elsewhere, with the exception of abstracts. Manuscripts with essentially the same content as a paper that has been published or accepted, or is under consideration for publication, will not be considered. All submitted papers will be peer-reviewed by at least two referees selected by an appropriate Associate Editor. Acceptance is based on scientific significance, originality, and clarity. When required, a revised manuscript should be submitted within 3 months, otherwise it will be considered to be a new submission. The Editor-in-Chief will make all final decisions regarding acceptance.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信