A simple and robust parametric shared frailty model for recurrent events with the competing risk of death: An application to the Carvedilol Prospective Randomized Cumulative Survival trial
{"title":"A simple and robust parametric shared frailty model for recurrent events with the competing risk of death: An application to the Carvedilol Prospective Randomized Cumulative Survival trial","authors":"Jiren Sun, Thomas Cook","doi":"10.1177/09622802241236934","DOIUrl":null,"url":null,"abstract":"Many non-fatal events can be considered recurrent in that they can occur repeatedly over time, and some researchers may be interested in the trajectory and relative risk of non-fatal events. With the competing risk of death, the treatment effect on the mean number of recurrent events is non-identifiable since the observed mean is a function of both the recurrent event and terminal event processes. In this paper, we assume independence between the non-fatal and the terminal event process, conditional on the shared frailty, to fit a parametric model that recovers the trajectory of, and identifies the effect of treatment on, the non-fatal event process in the presence of the competing risk of death. Simulation studies are conducted to verify the reliability of our estimators. We illustrate the method and perform model diagnostics using the Carvedilol Prospective Randomized Cumulative Survival trial which involves heart-failure events.","PeriodicalId":22038,"journal":{"name":"Statistical Methods in Medical Research","volume":"70 1","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2024-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistical Methods in Medical Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/09622802241236934","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
引用次数: 0
Abstract
Many non-fatal events can be considered recurrent in that they can occur repeatedly over time, and some researchers may be interested in the trajectory and relative risk of non-fatal events. With the competing risk of death, the treatment effect on the mean number of recurrent events is non-identifiable since the observed mean is a function of both the recurrent event and terminal event processes. In this paper, we assume independence between the non-fatal and the terminal event process, conditional on the shared frailty, to fit a parametric model that recovers the trajectory of, and identifies the effect of treatment on, the non-fatal event process in the presence of the competing risk of death. Simulation studies are conducted to verify the reliability of our estimators. We illustrate the method and perform model diagnostics using the Carvedilol Prospective Randomized Cumulative Survival trial which involves heart-failure events.
期刊介绍:
Statistical Methods in Medical Research is a peer reviewed scholarly journal and is the leading vehicle for articles in all the main areas of medical statistics and an essential reference for all medical statisticians. This unique journal is devoted solely to statistics and medicine and aims to keep professionals abreast of the many powerful statistical techniques now available to the medical profession. This journal is a member of the Committee on Publication Ethics (COPE)