Microstructure and Shear Properties Evolution of Minor Fe-Doped SAC/Cu Substrate Solder Joint under Isothermal Aging

IF 2.9 2区 材料科学 Q2 METALLURGY & METALLURGICAL ENGINEERING
Quanzhen Li, Chengming Li, Xiaojing Wang, Shanshan Cai, Jubo Peng, Shujin Chen, Jiajun Wang, Xiaohong Yuan
{"title":"Microstructure and Shear Properties Evolution of Minor Fe-Doped SAC/Cu Substrate Solder Joint under Isothermal Aging","authors":"Quanzhen Li,&nbsp;Chengming Li,&nbsp;Xiaojing Wang,&nbsp;Shanshan Cai,&nbsp;Jubo Peng,&nbsp;Shujin Chen,&nbsp;Jiajun Wang,&nbsp;Xiaohong Yuan","doi":"10.1007/s40195-024-01691-3","DOIUrl":null,"url":null,"abstract":"<div><p>Different amounts of Fe (0.005, 0.01, 0.03, 0.05, and 0.07 wt%) were added to SAC305 to study the shear behavior damage of Fe-doped SAC solder joints under thermal loading (170 °C, holding time of 0, 250, 500, and 750 h). The results show that during isothermal aging at 170 °C, the average shear force of all solder joints decreases with increasing aging time, while the average fracture energy first increases and then decreases, reaching a maximum at 500 h. Minor Fe doping could both increase shear forces and related fracture energy, with the optimum Fe doping amount being 0.03 wt% within the entire aging range. This is because the doping Fe reduces the undercooling of the SAC305 alloy, resulting in the microstructure refining of solder joints. This in turn causes the microstructure changing from network structure (SAC305 joint: eutectic network + β-Sn) to a single matrix structure (0.03Fe-doped SAC305 joint: β-Sn matrix + small compound particles). Specifically, Fe atoms can replace some Cu in Cu<sub>6</sub>Sn<sub>5</sub> (both inside the solder joint and at the interface), and then form (Cu,Fe)<sub>6</sub>Sn<sub>5</sub> compounds, resulting in an increase in the elastic modulus and nanohardness of the compounds. Moreover, the growth of Cu<sub>6</sub>Sn<sub>5</sub> and Cu<sub>3</sub>Sn intermetallic compounds (IMC) layer are inhibited by Fe doping even after the aging time prolonging, and Fe aggregates near the interface compound to form FeSn<sub>2</sub>. This study is of great significance for controlling the growth of interfacial compounds, stabilizing the microstructures, and providing strengthening strategy for solder joint alloy design.</p></div>","PeriodicalId":457,"journal":{"name":"Acta Metallurgica Sinica-English Letters","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2024-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Metallurgica Sinica-English Letters","FirstCategoryId":"1","ListUrlMain":"https://link.springer.com/article/10.1007/s40195-024-01691-3","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

Different amounts of Fe (0.005, 0.01, 0.03, 0.05, and 0.07 wt%) were added to SAC305 to study the shear behavior damage of Fe-doped SAC solder joints under thermal loading (170 °C, holding time of 0, 250, 500, and 750 h). The results show that during isothermal aging at 170 °C, the average shear force of all solder joints decreases with increasing aging time, while the average fracture energy first increases and then decreases, reaching a maximum at 500 h. Minor Fe doping could both increase shear forces and related fracture energy, with the optimum Fe doping amount being 0.03 wt% within the entire aging range. This is because the doping Fe reduces the undercooling of the SAC305 alloy, resulting in the microstructure refining of solder joints. This in turn causes the microstructure changing from network structure (SAC305 joint: eutectic network + β-Sn) to a single matrix structure (0.03Fe-doped SAC305 joint: β-Sn matrix + small compound particles). Specifically, Fe atoms can replace some Cu in Cu6Sn5 (both inside the solder joint and at the interface), and then form (Cu,Fe)6Sn5 compounds, resulting in an increase in the elastic modulus and nanohardness of the compounds. Moreover, the growth of Cu6Sn5 and Cu3Sn intermetallic compounds (IMC) layer are inhibited by Fe doping even after the aging time prolonging, and Fe aggregates near the interface compound to form FeSn2. This study is of great significance for controlling the growth of interfacial compounds, stabilizing the microstructures, and providing strengthening strategy for solder joint alloy design.

Abstract Image

等温老化条件下小铁掺杂 SAC/Cu 基底焊点的微观结构和剪切性能演变
在 SAC305 中添加了不同数量的铁(0.005、0.01、0.03、0.05 和 0.07 wt%),以研究掺铁 SAC 焊点在热加载(170 °C,保持时间为 0、250、500 和 750 小时)条件下的剪切行为损伤。结果表明,在 170 ℃ 等温老化过程中,所有焊点的平均剪切力都会随着老化时间的延长而减小,而平均断裂能则先增大后减小,在 500 h 时达到最大值。这是因为掺入的铁降低了 SAC305 合金的过冷度,导致焊点的微观结构细化。这反过来又使微观结构从网络结构(SAC305 焊点:共晶网络 + β-Sn)转变为单一基体结构(0.03Fe-掺杂的 SAC305 焊点:β-Sn 基体 + 小化合物颗粒)。具体来说,铁原子可以取代 Cu6Sn5 中的部分铜(包括焊点内部和界面处),然后形成(Cu,Fe)6Sn5 化合物,从而提高化合物的弹性模量和纳米硬度。此外,即使老化时间延长,Cu6Sn5 和 Cu3Sn 金属间化合物(IMC)层的生长也会受到铁掺杂的抑制,铁在界面化合物附近聚集形成 FeSn2。这项研究对于控制界面化合物的生长、稳定微观结构以及为焊点合金设计提供强化策略具有重要意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Acta Metallurgica Sinica-English Letters
Acta Metallurgica Sinica-English Letters METALLURGY & METALLURGICAL ENGINEERING-
CiteScore
6.60
自引率
14.30%
发文量
122
审稿时长
2 months
期刊介绍: This international journal presents compact reports of significant, original and timely research reflecting progress in metallurgy, materials science and engineering, including materials physics, physical metallurgy, and process metallurgy.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信