{"title":"Capsaicin modulates Akkermansia muciniphila abundance by enhancing MUCIN2 levels in mice fed with high-fat diets","authors":"Ting Gong, Yujing Zhou, Qinhong Shi, Yanyan Li, Haizhu Wang, Linzheng Liao","doi":"10.29219/fnr.v68.9990","DOIUrl":null,"url":null,"abstract":"<p><span style=\"color: #000000; font-family: 'Times New Roman'; font-size: medium; font-style: normal; font-variant-ligatures: normal; font-variant-caps: normal; font-weight: 400; letter-spacing: normal; orphans: 2; text-align: start; text-indent: 0px; text-transform: none; widows: 2; word-spacing: 0px; -webkit-text-stroke-width: 0px; white-space: normal; text-decoration-thickness: initial; text-decoration-style: initial; text-decoration-color: initial; display: inline !important; float: none;\">Extensive research has been conducted to investigate the impact of capsaicin (CAP) on lipid metabolism, focusing specifically on its interaction with the vanilloid subtype 1 (TRPV1) ion channel. Additionally, studies have illuminated the role of Akkermansia muciniphila (</span><em style=\"color: #000000; font-family: 'Times New Roman'; font-size: medium; font-variant-ligatures: normal; font-variant-caps: normal; font-weight: 400; letter-spacing: normal; orphans: 2; text-align: start; text-indent: 0px; text-transform: none; widows: 2; word-spacing: 0px; -webkit-text-stroke-width: 0px; white-space: normal; text-decoration-thickness: initial; text-decoration-style: initial; text-decoration-color: initial;\">A. muciniphila</em><span style=\"color: #000000; font-family: 'Times New Roman'; font-size: medium; font-style: normal; font-variant-ligatures: normal; font-variant-caps: normal; font-weight: 400; letter-spacing: normal; orphans: 2; text-align: start; text-indent: 0px; text-transform: none; widows: 2; word-spacing: 0px; -webkit-text-stroke-width: 0px; white-space: normal; text-decoration-thickness: initial; text-decoration-style: initial; text-decoration-color: initial; display: inline !important; float: none;\">), a specific strain of intestinal microbiota, in lipid metabolism. In this study, a model utilizing resiniferatoxin (RTX) was employed to deactivate TRPV1 ion channels in germ-free mice, followed by the administration of A. muciniphila via gavage. Following the collection of intestinal tissues for a comprehensive analysis, employing histopathology, qPCR, and ELISA techniques, our findings revealed a significant upregulation of MUC2 and MUC3 expression induced by CAP. This upregulation resulted in the thickening of the colonic mucus layers. Notably, this effect was absent when TRPV1 was selectively inhibited. Moreover, there was no discernible impact on goblet cells. The findings strongly indicate that CAP influences the system by activating the TRPV1 ion channel, thereby enhancing the expression of mucin MUC2 and promoting an augmentation in the thickness of the mucous layer. This activation, in turn, supplies </span><em style=\"color: #000000; font-family: 'Times New Roman'; font-size: medium; font-variant-ligatures: normal; font-variant-caps: normal; font-weight: 400; letter-spacing: normal; orphans: 2; text-align: start; text-indent: 0px; text-transform: none; widows: 2; word-spacing: 0px; -webkit-text-stroke-width: 0px; white-space: normal; text-decoration-thickness: initial; text-decoration-style: initial; text-decoration-color: initial;\">A. muciniphila</em><span style=\"color: #000000; font-family: 'Times New Roman'; font-size: medium; font-style: normal; font-variant-ligatures: normal; font-variant-caps: normal; font-weight: 400; letter-spacing: normal; orphans: 2; text-align: start; text-indent: 0px; text-transform: none; widows: 2; word-spacing: 0px; -webkit-text-stroke-width: 0px; white-space: normal; text-decoration-thickness: initial; text-decoration-style: initial; text-decoration-color: initial; display: inline !important; float: none;\"> with an ample source of carbon and nitrogen. This insight potentially clarify the underlying mechanism through which CAP facilitates the increase in </span><em style=\"color: #000000; font-family: 'Times New Roman'; font-size: medium; font-variant-ligatures: normal; font-variant-caps: normal; font-weight: 400; letter-spacing: normal; orphans: 2; text-align: start; text-indent: 0px; text-transform: none; widows: 2; word-spacing: 0px; -webkit-text-stroke-width: 0px; white-space: normal; text-decoration-thickness: initial; text-decoration-style: initial; text-decoration-color: initial;\">A. muciniphila</em><span style=\"color: #000000; font-family: 'Times New Roman'; font-size: medium; font-style: normal; font-variant-ligatures: normal; font-variant-caps: normal; font-weight: 400; letter-spacing: normal; orphans: 2; text-align: start; text-indent: 0px; text-transform: none; widows: 2; word-spacing: 0px; -webkit-text-stroke-width: 0px; white-space: normal; text-decoration-thickness: initial; text-decoration-style: initial; text-decoration-color: initial; display: inline !important; float: none;\"> abundance</span></p>","PeriodicalId":12119,"journal":{"name":"Food & Nutrition Research","volume":null,"pages":null},"PeriodicalIF":3.5000,"publicationDate":"2024-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food & Nutrition Research","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.29219/fnr.v68.9990","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Extensive research has been conducted to investigate the impact of capsaicin (CAP) on lipid metabolism, focusing specifically on its interaction with the vanilloid subtype 1 (TRPV1) ion channel. Additionally, studies have illuminated the role of Akkermansia muciniphila (A. muciniphila), a specific strain of intestinal microbiota, in lipid metabolism. In this study, a model utilizing resiniferatoxin (RTX) was employed to deactivate TRPV1 ion channels in germ-free mice, followed by the administration of A. muciniphila via gavage. Following the collection of intestinal tissues for a comprehensive analysis, employing histopathology, qPCR, and ELISA techniques, our findings revealed a significant upregulation of MUC2 and MUC3 expression induced by CAP. This upregulation resulted in the thickening of the colonic mucus layers. Notably, this effect was absent when TRPV1 was selectively inhibited. Moreover, there was no discernible impact on goblet cells. The findings strongly indicate that CAP influences the system by activating the TRPV1 ion channel, thereby enhancing the expression of mucin MUC2 and promoting an augmentation in the thickness of the mucous layer. This activation, in turn, supplies A. muciniphila with an ample source of carbon and nitrogen. This insight potentially clarify the underlying mechanism through which CAP facilitates the increase in A. muciniphila abundance
期刊介绍:
Food & Nutrition Research is a peer-reviewed journal that presents the latest scientific research in various fields focusing on human nutrition. The journal publishes both quantitative and qualitative research papers.
Through an Open Access publishing model, Food & Nutrition Research opens an important forum for researchers from academic and private arenas to exchange the latest results from research on human nutrition in a broad sense, both original papers and reviews, including:
* Associations and effects of foods and nutrients on health
* Dietary patterns and health
* Molecular nutrition
* Health claims on foods
* Nutrition and cognitive functions
* Nutritional effects of food composition and processing
* Nutrition in developing countries
* Animal and in vitro models with clear relevance for human nutrition
* Nutrition and the Environment
* Food and Nutrition Education
* Nutrition and Economics
Research papers on food chemistry (focus on chemical composition and analysis of foods) are generally not considered eligible, unless the results have a clear impact on human nutrition.
The journal focuses on the different aspects of nutrition for people involved in nutrition research such as Dentists, Dieticians, Medical doctors, Nutritionists, Teachers, Journalists and Manufacturers in the food and pharmaceutical industries.