Shimin Liu, Guilei Liu, Jianlong Qiu, Lei Yang, Yanjie Guo
{"title":"Recent progress of flexible pressure sensors: from principle, structure to application characteristics","authors":"Shimin Liu, Guilei Liu, Jianlong Qiu, Lei Yang, Yanjie Guo","doi":"10.1088/2058-8585/ad396e","DOIUrl":null,"url":null,"abstract":"Due to its conformal capability, the flexible pressure sensor has a wide range of applications in wearable devices, health monitoring, human–machine interfaces, and other fields. Sensors designed according to various principles and application scenarios exhibit a variety of good characteristics such as high sensitivity, high transparency, a wide detection limit, and low crosstalk. However, achieving all these exceptional functions within a single sensor is evidently challenging. Therefore, it is prudent to emphasize specific advantageous features depending on the unique usage environments and application scenarios. This paper first describes the classification of flexible pressure sensors based on their working principle, then summarizes the commonly used materials and sensor characteristics, and finally reviews the application characteristics of flexible pressure sensors based on different application fields and scenarios. The bottleneck challenges encountered in the development of flexible pressure sensors are discussed, and the foreseeable development strategy is predicted.","PeriodicalId":51335,"journal":{"name":"Flexible and Printed Electronics","volume":"85 1","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2024-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Flexible and Printed Electronics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1088/2058-8585/ad396e","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Due to its conformal capability, the flexible pressure sensor has a wide range of applications in wearable devices, health monitoring, human–machine interfaces, and other fields. Sensors designed according to various principles and application scenarios exhibit a variety of good characteristics such as high sensitivity, high transparency, a wide detection limit, and low crosstalk. However, achieving all these exceptional functions within a single sensor is evidently challenging. Therefore, it is prudent to emphasize specific advantageous features depending on the unique usage environments and application scenarios. This paper first describes the classification of flexible pressure sensors based on their working principle, then summarizes the commonly used materials and sensor characteristics, and finally reviews the application characteristics of flexible pressure sensors based on different application fields and scenarios. The bottleneck challenges encountered in the development of flexible pressure sensors are discussed, and the foreseeable development strategy is predicted.
期刊介绍:
Flexible and Printed Electronics is a multidisciplinary journal publishing cutting edge research articles on electronics that can be either flexible, plastic, stretchable, conformable or printed. Research related to electronic materials, manufacturing techniques, components or systems which meets any one (or more) of the above criteria is suitable for publication in the journal. Subjects included in the journal range from flexible materials and printing techniques, design or modelling of electrical systems and components, advanced fabrication methods and bioelectronics, to the properties of devices and end user applications.