MiR-497-5p ameliorates the oxyhemoglobin-induced subarachnoid hemorrhage injury in vitro by targeting orthodenticle homeobox protein 1 (Otx1) to activate the Nrf2/HO-1 pathway

IF 2.3 3区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY
Jun Zhu, Enyu Pan, Lujun Pang, Xiwei Zhou, Yanjun Che, Zhao Liu
{"title":"MiR-497-5p ameliorates the oxyhemoglobin-induced subarachnoid hemorrhage injury in vitro by targeting orthodenticle homeobox protein 1 (Otx1) to activate the Nrf2/HO-1 pathway","authors":"Jun Zhu, Enyu Pan, Lujun Pang, Xiwei Zhou, Yanjun Che, Zhao Liu","doi":"10.1007/s00438-024-02137-2","DOIUrl":null,"url":null,"abstract":"<p>Subarachnoid hemorrhage (SAH) is a neurological disorder that severely damages the brain and causes cognitive impairment. MicroRNAs are critical regulators in a variety of neurological diseases. MiR-497-5p has been found to be downregulated in the aneurysm vessel walls obtained from patients with aneurysmal subarachnoid hemorrhage, but its functions and mechanisms in SAH have not been reported. Therefore, this study was designed to investigate the effect of miR-497-5p and its related mechanisms in SAH. We established an in vitro SAH model by exposing PC12 cells to oxyhemoglobin (oxyHb). We found that miR-497-5p was downregulated in SAH serum and oxyHb-treated PC12 cells, and its overexpression inhibited the oxyHb-induced apoptosis, inflammatory response and oxidative stress via activation of the Nrf2 pathway. Mechanistically, the targeting relationship between miR-497-5p and Otx1 was verified by luciferase reporter assays. Moreover, Otx1 upregulation abolished the protective effects of miR-497-5p upregulation against oxyHb-induced apoptosis, inflammation and oxidative stress in PC12 cells. Collectively, our findings indicate that miR-497-5p could inhibit the oxyHb-induced SAH damage by targeting Otx1 to activate the Nrf2/HO-1 pathway, which provides a potential therapeutic target for SAH treatment.</p>","PeriodicalId":18816,"journal":{"name":"Molecular Genetics and Genomics","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2024-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Genetics and Genomics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00438-024-02137-2","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Subarachnoid hemorrhage (SAH) is a neurological disorder that severely damages the brain and causes cognitive impairment. MicroRNAs are critical regulators in a variety of neurological diseases. MiR-497-5p has been found to be downregulated in the aneurysm vessel walls obtained from patients with aneurysmal subarachnoid hemorrhage, but its functions and mechanisms in SAH have not been reported. Therefore, this study was designed to investigate the effect of miR-497-5p and its related mechanisms in SAH. We established an in vitro SAH model by exposing PC12 cells to oxyhemoglobin (oxyHb). We found that miR-497-5p was downregulated in SAH serum and oxyHb-treated PC12 cells, and its overexpression inhibited the oxyHb-induced apoptosis, inflammatory response and oxidative stress via activation of the Nrf2 pathway. Mechanistically, the targeting relationship between miR-497-5p and Otx1 was verified by luciferase reporter assays. Moreover, Otx1 upregulation abolished the protective effects of miR-497-5p upregulation against oxyHb-induced apoptosis, inflammation and oxidative stress in PC12 cells. Collectively, our findings indicate that miR-497-5p could inhibit the oxyHb-induced SAH damage by targeting Otx1 to activate the Nrf2/HO-1 pathway, which provides a potential therapeutic target for SAH treatment.

Abstract Image

MiR-497-5p通过靶向orthodenticle homeobox protein 1 (Otx1)激活Nrf2/HO-1通路,改善氧合血红蛋白诱导的体外蛛网膜下腔出血损伤
蛛网膜下腔出血(SAH)是一种严重损害大脑并导致认知障碍的神经系统疾病。微RNA是多种神经系统疾病的关键调节因子。有研究发现,在动脉瘤性蛛网膜下腔出血患者的动脉瘤血管壁中,MiR-497-5p出现下调,但其在SAH中的功能和机制尚未见报道。因此,本研究旨在探讨 miR-497-5p 在 SAH 中的作用及其相关机制。我们将 PC12 细胞暴露于氧血红蛋白(oxyHb)中,建立了一个体外 SAH 模型。我们发现,miR-497-5p在SAH血清和氧合血红蛋白处理的PC12细胞中下调,其过表达可通过激活Nrf2通路抑制氧合血红蛋白诱导的细胞凋亡、炎症反应和氧化应激。从机理上讲,miR-497-5p 与 Otx1 的靶向关系通过荧光素酶报告实验得到了验证。此外,Otx1 的上调取消了 miR-497-5p 上调对氧合血红蛋白诱导的 PC12 细胞凋亡、炎症和氧化应激的保护作用。总之,我们的研究结果表明,miR-497-5p 可通过靶向 Otx1 激活 Nrf2/HO-1 通路来抑制氧合血红蛋白诱导的 SAH 损伤,这为 SAH 治疗提供了一个潜在的治疗靶点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Molecular Genetics and Genomics
Molecular Genetics and Genomics 生物-生化与分子生物学
CiteScore
5.10
自引率
3.20%
发文量
134
审稿时长
1 months
期刊介绍: Molecular Genetics and Genomics (MGG) publishes peer-reviewed articles covering all areas of genetics and genomics. Any approach to the study of genes and genomes is considered, be it experimental, theoretical or synthetic. MGG publishes research on all organisms that is of broad interest to those working in the fields of genetics, genomics, biology, medicine and biotechnology. The journal investigates a broad range of topics, including these from recent issues: mechanisms for extending longevity in a variety of organisms; screening of yeast metal homeostasis genes involved in mitochondrial functions; molecular mapping of cultivar-specific avirulence genes in the rice blast fungus and more.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信