Xiaomeng Zhu, Pär Mårtensson, Lars Hanson, Mårten Björkman, Atsuto Maki
{"title":"Automated assembly quality inspection by deep learning with 2D and 3D synthetic CAD data","authors":"Xiaomeng Zhu, Pär Mårtensson, Lars Hanson, Mårten Björkman, Atsuto Maki","doi":"10.1007/s10845-024-02375-6","DOIUrl":null,"url":null,"abstract":"<p>In the manufacturing industry, automatic quality inspections can lead to improved product quality and productivity. Deep learning-based computer vision technologies, with their superior performance in many applications, can be a possible solution for automatic quality inspections. However, collecting a large amount of annotated training data for deep learning is expensive and time-consuming, especially for processes involving various products and human activities such as assembly. To address this challenge, we propose a method for automated assembly quality inspection using synthetic data generated from computer-aided design (CAD) models. The method involves two steps: automatic data generation and model implementation. In the first step, we generate synthetic data in two formats: two-dimensional (2D) images and three-dimensional (3D) point clouds. In the second step, we apply different state-of-the-art deep learning approaches to the data for quality inspection, including unsupervised domain adaptation, i.e., a method of adapting models across different data distributions, and transfer learning, which transfers knowledge between related tasks. We evaluate the methods in a case study of pedal car front-wheel assembly quality inspection to identify the possible optimal approach for assembly quality inspection. Our results show that the method using Transfer Learning on 2D synthetic images achieves superior performance compared with others. Specifically, it attained 95% accuracy through fine-tuning with only five annotated real images per class. With promising results, our method may be suggested for other similar quality inspection use cases. By utilizing synthetic CAD data, our method reduces the need for manual data collection and annotation. Furthermore, our method performs well on test data with different backgrounds, making it suitable for different manufacturing environments.</p>","PeriodicalId":16193,"journal":{"name":"Journal of Intelligent Manufacturing","volume":"13 1","pages":""},"PeriodicalIF":5.9000,"publicationDate":"2024-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Intelligent Manufacturing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s10845-024-02375-6","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
In the manufacturing industry, automatic quality inspections can lead to improved product quality and productivity. Deep learning-based computer vision technologies, with their superior performance in many applications, can be a possible solution for automatic quality inspections. However, collecting a large amount of annotated training data for deep learning is expensive and time-consuming, especially for processes involving various products and human activities such as assembly. To address this challenge, we propose a method for automated assembly quality inspection using synthetic data generated from computer-aided design (CAD) models. The method involves two steps: automatic data generation and model implementation. In the first step, we generate synthetic data in two formats: two-dimensional (2D) images and three-dimensional (3D) point clouds. In the second step, we apply different state-of-the-art deep learning approaches to the data for quality inspection, including unsupervised domain adaptation, i.e., a method of adapting models across different data distributions, and transfer learning, which transfers knowledge between related tasks. We evaluate the methods in a case study of pedal car front-wheel assembly quality inspection to identify the possible optimal approach for assembly quality inspection. Our results show that the method using Transfer Learning on 2D synthetic images achieves superior performance compared with others. Specifically, it attained 95% accuracy through fine-tuning with only five annotated real images per class. With promising results, our method may be suggested for other similar quality inspection use cases. By utilizing synthetic CAD data, our method reduces the need for manual data collection and annotation. Furthermore, our method performs well on test data with different backgrounds, making it suitable for different manufacturing environments.
期刊介绍:
The Journal of Nonlinear Engineering aims to be a platform for sharing original research results in theoretical, experimental, practical, and applied nonlinear phenomena within engineering. It serves as a forum to exchange ideas and applications of nonlinear problems across various engineering disciplines. Articles are considered for publication if they explore nonlinearities in engineering systems, offering realistic mathematical modeling, utilizing nonlinearity for new designs, stabilizing systems, understanding system behavior through nonlinearity, optimizing systems based on nonlinear interactions, and developing algorithms to harness and leverage nonlinear elements.